TY - JOUR A1 - Jewitt, David A1 - Weaver, Harold A1 - Mutchler, Max A1 - Larson, Stephen A1 - Agarwal, Jessica T1 - Hubble space telescope observations of main-belt comet (596) scheila JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - We present Hubble Space Telescope Observations of (596) Scheila during its recent dust outburst. The nucleus remained point-like with absolute magnitude H(V) = 8.85 +/- 0.02 in our data, equal to the pre-outburst value, with no secondary fragments of diameter >= 100m (for assumed albedos 0.04). We find a coma having a peak scattering cross section similar to 2.2x10(4) km(2), corresponding to a mass in micron-sized particles of similar to 4x10(7) kg. The particles are deflected by solar radiation pressure on projected spatial scales similar to 2x10(4) km, in the sunward direction, and swept from the vicinity of the nucleus on timescales of weeks. The coma fades by similar to 30% between observations on UT 2010 December 27 and 2011 January 4. The observed mass loss is inconsistent with an origin either by rotational instability of the nucleus or by electrostatic ejection of regolith charged by sunlight. Dust ejection could be caused by the sudden but unexplained exposure of buried ice. However, the data are most simply explained by the impact, at similar to 5 km s(-1), of a previously unknown asteroid similar to 35m in diameter. KW - comets: general KW - comets: individual ((596) Scheila) KW - minor planets, asteroids: general Y1 - 2011 U6 - https://doi.org/10.1088/2041-8205/733/1/L4 SN - 2041-8205 VL - 733 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toy, Virginia Gail A1 - Sutherland, Rupert A1 - Townend, John A1 - Allen, Michael J. A1 - Becroft, Leeza A1 - Boles, Austin A1 - Boulton, Carolyn A1 - Carpenter, Brett A1 - Cooper, Alan A1 - Cox, Simon C. A1 - Daube, Christopher A1 - Faulkner, D. R. A1 - Halfpenny, Angela A1 - Kato, Naoki A1 - Keys, Stephen A1 - Kirilova, Martina A1 - Kometani, Yusuke A1 - Little, Timothy A1 - Mariani, Elisabetta A1 - Melosh, Benjamin A1 - Menzies, Catriona D. A1 - Morales, Luiz A1 - Morgan, Chance A1 - Mori, Hiroshi A1 - Niemeijer, Andre A1 - Norris, Richard A1 - Prior, David A1 - Sauer, Katrina A1 - Schleicher, Anja Maria A1 - Shigematsu, Norio A1 - Teagle, Damon A. H. A1 - Tobin, Harold A1 - Valdez, Robert A1 - Williams, Jack A1 - Yeo, Samantha A1 - Baratin, Laura-May A1 - Barth, Nicolas A1 - Benson, Adrian A1 - Boese, Carolin A1 - Célérier, Bernard A1 - Chamberlain, Calum J. A1 - Conze, Ronald A1 - Coussens, Jamie A1 - Craw, Lisa A1 - Doan, Mai-Linh A1 - Eccles, Jennifer A1 - Grieve, Jason A1 - Grochowski, Julia A1 - Gulley, Anton A1 - Howarth, Jamie A1 - Jacobs, Katrina A1 - Janku-Capova, Lucie A1 - Jeppson, Tamara A1 - Langridge, Robert A1 - Mallyon, Deirdre A1 - Marx, Ray A1 - Massiot, Cécile A1 - Mathewson, Loren A1 - Moore, Josephine A1 - Nishikawa, Osamu A1 - Pooley, Brent A1 - Pyne, Alex A1 - Savage, Martha K. A1 - Schmitt, Doug A1 - Taylor-Offord, Sam A1 - Upton, Phaedra A1 - Weaver, Konrad C. A1 - Wiersberg, Thomas A1 - Zimmer, Martin T1 - Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand JF - New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG N2 - During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled. KW - Alpine Fault KW - New Zealand KW - scientific drilling KW - mylonite KW - cataclasite Y1 - 2017 U6 - https://doi.org/10.1080/00288306.2017.1375533 SN - 0028-8306 SN - 1175-8791 VL - 60 IS - 4 SP - 497 EP - 518 PB - Taylor & Francis CY - Abingdon ER -