TY - JOUR A1 - von Berlepsch, Hans A1 - Boettcher, Christoph A1 - Skrabania, Katja A1 - Laschewsky, André T1 - Complex domain architecture of multicompartment micelles from a linear ABC triblock copolymer revealed by cryogenic electron tomography N2 - Cryo-electron tomography of raspberry-like multicompartment micelles formed by a linear ABC triblock copolymer in water revealed that the fluorocarbon domains may be dispersed all over the hydrocarbon core. Y1 - 2009 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CC U6 - https://doi.org/10.1039/B903658j SN - 1359-7345 ER - TY - JOUR A1 - Skrabania, Katja A1 - von Berlepsch, Hans A1 - Böttcher, Christoph A1 - Laschewsky, André T1 - Synthesis of ternary, hydrophilic-lipophilic-fluorophilic block copolymers by consecutive RAFT polymerizations and their self-assembly into multicompartment micelles N2 - Linear amphiphilic diblock and ternary triblock copolymers were synthesized by the RAFT method in three Successive Steps, using oligo(ethylene oxide) monomethyl ether acrylate, butyl or 2-ethylhexyl acrylate, and 1H, 1H, 2H, 2H-perfluorodecyl acrylate. The diblock and the triblock copolymers, which consist of a hydrophilic, a lipophilic, and a fluorophilic block, self-assemble in water into spherical micellar aggregates. Imaging by cryogenic transmission electron microscopy (cryo-TEM) revealed that the cores of the micellar aggregates made from these "triphilic" copolymers undergo local phase separation to form various ultrastructures, which depend sensitivity on the given block sequence. While the sequence hydrophilic-lipophilic-fluorophilic resulted in multicompartment cores with core-shell-corona morphology, the sequence lipophilic-hydrophilic-fluorophilic provided new "patched double micelle" and larger "soccer ball" structures. Y1 - 2010 UR - http://pubs.acs.org/journal/mamobx U6 - https://doi.org/10.1021/Ma901913f SN - 0024-9297 ER - TY - JOUR A1 - Skrabania, Katja A1 - Laschewsky, André A1 - von Berlepsch, Hans A1 - Boettcher, Christoph T1 - Synthesis and micellar self-assembly of ternary hydrophilic-lipophilic-fluorophilic block copolymers with a linear PEO chain N2 - Linear amphiphilic diblock and ternary triblock copolymers were synthesized by the RAFT method in two successive steps using a poly(ethylene oxide) (PEO) macrochain transfer agent, butyl or 2-ethylhexyl acrylate, and 1H, 1H, 2H, 2H-perfluorodecyl acrylate. The diblock and the triblock copolymers, which consist of a hydrophilic, a lipophilic, and a short fluorophilic block, self-assemble in water into spherical micellar aggregates. Imaging by cryogenic transmission electron microscopy (cryo-TEM) revealed that the micellar cores of the aggregates made from these "triphilic" copolymers can undergo local phase separation to form a unique ultrastructure. In these multicompartment micelles, it appears that extended nonspherical domains, presumably made of nanocrystallites of the fluorocarbon block, are embedded in the hydrocarbon matrix forming the spherical micellar core. This novel internal structure of a micellar core is attributed to the mutual incompatibility of the fluorocarbon and hydrocarbon side chains in combination with the tendency of the used fluorocarbon acrylate monomer to undergo side-chain crystallization. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La900253j SN - 0743-7463 ER - TY - JOUR A1 - Marsat, Jean-Noel A1 - Stahlhut, Frank A1 - Laschewsky, André A1 - von Berlepsch, Hans A1 - Böttcher, Christoph T1 - Multicompartment micelles from silicone-based triphilic block copolymers JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - An amphiphilic linear ternary block copolymer was synthesised in three consecutive steps via reversible addition-fragmentation chain transfer polymerisation. Oligo(ethylene glycol) monomethyl ether acrylate was engaged as a hydrophilic building block, while benzyl acrylate and 3-tris(trimethylsiloxy)silyl propyl acrylate served as hydrophobic building blocks. The resulting "triphilic" copolymer consists thus of a hydrophilic (A) and two mutually incompatible "soft" hydrophobic blocks, namely, a lipophilic (B) and a silicone-based (C) block, with all blocks having glass transition temperatures well below 0 A degrees C. The triphilic copolymer self-assembles into spherical multicompartment micellar aggregates in aqueous solution, where the two hydrophobic blocks undergo local phase separation into various ultrastructures as evidenced by cryogenic transmission electron microscopy. Thus, a silicone-based polymer block can replace the hitherto typically employed fluorocarbon-based hydrophobic blocks in triphilic block copolymers for inducing multicompartmentalisation. KW - Amphiphiles KW - Triphilic block copolymers KW - Core-shell-corona micelles KW - RAFT KW - Cryo-TEM KW - Multicompartment micelles Y1 - 2013 U6 - https://doi.org/10.1007/s00396-013-3001-2 SN - 0303-402X SN - 1435-1536 VL - 291 IS - 11 SP - 2561 EP - 2567 PB - Springer CY - New York ER - TY - JOUR A1 - Kubowicz, Stephan A1 - Baussard, Jean-Francois A1 - Lutz, Jean-Francois A1 - Thünemann, Andreas F. A1 - von Berlepsch, Hans A1 - Laschewsky, André T1 - Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium Y1 - 2005 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Marsat, Jean-Noël A1 - Heydenreich, Matthias A1 - von Berlepsch, Hans A1 - Laschewsky, André T1 - Self-Assembly into Multicompartment Micelles and Selective Solubilization by Hydrophilic-Lipophilic- Fluorophilic Block Copolymers Y1 - 2011 SN - 0024-9297 ER -