TY - GEN A1 - Eccard, Jana A1 - Jokinen, Ilmari A1 - Ylönen, Hannu T1 - Loss of density-dependence and incomplete control by dominant breeders in a territorial species with density outbreaks N2 - Background A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression. Results We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM) of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density. Conclusions At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point), the dominance of breeders could not be sustained (incomplete control). In our experiment, this point was reached after territories could not shrink any further, while the number of intruders continued to increase with increasing density. Probably suppression becomes too costly for the dominants, and increasing number of other breeders reduces the effectiveness of threats. In wild populations, crossing this threshold would allow for a rapid density increase or population outbreaks, enabling territorial species to escape density-dependency. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 372 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400939 ER - TY - JOUR A1 - Eccard, Jana A1 - Dammhahn, Melanie A1 - Ylonen, Hannu T1 - The Bruce effect revisited: is pregnancy termination in female rodents an adaptation to ensure breeding success after male turnover in low densities? JF - Oecologia N2 - Pregnancy termination after encountering a strange male, the Bruce effect, is regarded as a counterstrategy of female mammals towards anticipated infanticide. While confirmed in caged rodent pairs, no verification for the Bruce effect existed from experimental field populations of small rodents. We suggest that the effect may be adaptive for breeding rodent females only under specific conditions related to populations with cyclically fluctuating densities. We investigated the occurrence of delay in birth date after experimental turnover of the breeding male under different population composition in bank voles (Myodes glareolus) in large outdoor enclosures: one-male-multiple-females (n = 6 populations/18 females), multiple-males-multiplefemales (n = 15/45), and single-male-single-female (MF treatment, n = 74/74). Most delays were observed in the MF treatment after turnover. Parallel we showed in a laboratory experiment (n = 205 females) that overwintered and primiparous females, the most abundant cohort during population lows in the increase phase of cyclic rodent populations, were more likely to delay births after turnover of the male than year-born and multiparous females. Taken together, our results suggest that the Bruce effect may be an adaptive breeding strategy for rodent females in cyclic populations specifically at low densities in the increase phase, when isolated, overwintered animals associate in MF pairs. During population lows infanticide risk and inbreeding risk may then be higher than during population highs, while also the fitness value of a litter in an increasing population is higher. Therefore, the Bruce effect may be adaptive for females during annual population lows in the increase phases, even at the costs of delaying reproduction. KW - Breeding strategies KW - Dip test KW - Infanticide KW - Myodes voles KW - Sexual conflict KW - Sexual selection Y1 - 2017 U6 - https://doi.org/10.1007/s00442-017-3904-6 SN - 0029-8549 SN - 1432-1939 VL - 185 SP - 81 EP - 94 PB - Springer CY - New York ER - TY - GEN A1 - Eccard, Jana A1 - Dammhahn, Melanie A1 - Ylönen, Hannu T1 - The Bruce effect revisited BT - is pregnancy termination in female rodents an adaptation to ensure breeding success after male turnover in low densities? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Pregnancy termination after encountering a strange male, the Bruce effect, is regarded as a counterstrategy of female mammals towards anticipated infanticide. While confirmed in caged rodent pairs, no verification for the Bruce effect existed from experimental field populations of small rodents. We suggest that the effect may be adaptive for breeding rodent females only under specific conditions related to populations with cyclically fluctuating densities. We investigated the occurrence of delay in birth date after experimental turnover of the breeding male under different population composition in bank voles (Myodes glareolus) in large outdoor enclosures: one-male–multiple-females (n = 6 populations/18 females), multiple-males–multiple-females (n = 15/45), and single-male–single-female (MF treatment, n = 74/74). Most delays were observed in the MF treatment after turnover. Parallel we showed in a laboratory experiment (n = 205 females) that overwintered and primiparous females, the most abundant cohort during population lows in the increase phase of cyclic rodent populations, were more likely to delay births after turnover of the male than year-born and multiparous females. Taken together, our results suggest that the Bruce effect may be an adaptive breeding strategy for rodent females in cyclic populations specifically at low densities in the increase phase, when isolated, overwintered animals associate in MF pairs. During population lows infanticide risk and inbreeding risk may then be higher than during population highs, while also the fitness value of a litter in an increasing population is higher. Therefore, the Bruce effect may be adaptive for females during annual population lows in the increase phases, even at the costs of delaying reproduction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 734 KW - breeding strategies KW - dip test KW - infanticide KW - Myodes voles KW - sexual conflict KW - sexual selection Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432956 SN - 1866-8372 IS - 734 ER -