TY - JOUR A1 - Fages, Antoine A1 - Hanghoj, Kristian A1 - Khan, Naveed A1 - Gaunitz, Charleen A1 - Seguin-Orlando, Andaine A1 - Leonardi, Michela A1 - Constantz, Christian McCrory A1 - Gamba, Cristina A1 - Al-Rasheid, Khaled A. S. A1 - Albizuri, Silvia A1 - Alfarhan, Ahmed H. A1 - Allentoft, Morten A1 - Alquraishi, Saleh A1 - Anthony, David A1 - Baimukhanov, Nurbol A1 - Barrett, James H. A1 - Bayarsaikhan, Jamsranjav A1 - Benecke, Norbert A1 - Bernaldez-Sanchez, Eloisa A1 - Berrocal-Rangel, Luis A1 - Biglari, Fereidoun A1 - Boessenkool, Sanne A1 - Boldgiv, Bazartseren A1 - Brem, Gottfried A1 - Brown, Dorcas A1 - Burger, Joachim A1 - Crubezy, Eric A1 - Daugnora, Linas A1 - Davoudi, Hossein A1 - Damgaard, Peter de Barros A1 - de Chorro y de Villa-Ceballos, Maria de los Angeles A1 - Deschler-Erb, Sabine A1 - Detry, Cleia A1 - Dill, Nadine A1 - Oom, Maria do Mar A1 - Dohr, Anna A1 - Ellingvag, Sturla A1 - Erdenebaatar, Diimaajav A1 - Fathi, Homa A1 - Felkel, Sabine A1 - Fernandez-Rodriguez, Carlos A1 - Garcia-Vinas, Esteban A1 - Germonpre, Mietje A1 - Granado, Jose D. A1 - Hallsson, Jon H. A1 - Hemmer, Helmut A1 - Hofreiter, Michael A1 - Kasparov, Aleksei A1 - Khasanov, Mutalib A1 - Khazaeli, Roya A1 - Kosintsev, Pavel A1 - Kristiansen, Kristian A1 - Kubatbek, Tabaldiev A1 - Kuderna, Lukas A1 - Kuznetsov, Pavel A1 - Laleh, Haeedeh A1 - Leonard, Jennifer A. A1 - Lhuillier, Johanna A1 - von Lettow-Vorbeck, Corina Liesau A1 - Logvin, Andrey A1 - Lougas, Lembi A1 - Ludwig, Arne A1 - Luis, Cristina A1 - Arruda, Ana Margarida A1 - Marques-Bonet, Tomas A1 - Silva, Raquel Matoso A1 - Merz, Victor A1 - Mijiddorj, Enkhbayar A1 - Miller, Bryan K. A1 - Monchalov, Oleg A1 - Mohaseb, Fatemeh A. A1 - Morales, Arturo A1 - Nieto-Espinet, Ariadna A1 - Nistelberger, Heidi A1 - Onar, Vedat A1 - Palsdottir, Albina H. A1 - Pitulko, Vladimir A1 - Pitskhelauri, Konstantin A1 - Pruvost, Melanie A1 - Sikanjic, Petra Rajic A1 - Papesa, Anita Rapan A1 - Roslyakova, Natalia A1 - Sardari, Alireza A1 - Sauer, Eberhard A1 - Schafberg, Renate A1 - Scheu, Amelie A1 - Schibler, Jorg A1 - Schlumbaum, Angela A1 - Serrand, Nathalie A1 - Serres-Armero, Aitor A1 - Shapiro, Beth A1 - Seno, Shiva Sheikhi A1 - Shevnina, Irina A1 - Shidrang, Sonia A1 - Southon, John A1 - Star, Bastiaan A1 - Sykes, Naomi A1 - Taheri, Kamal A1 - Taylor, William A1 - Teegen, Wolf-Rudiger A1 - Vukicevic, Tajana Trbojevic A1 - Trixl, Simon A1 - Tumen, Dashzeveg A1 - Undrakhbold, Sainbileg A1 - Usmanova, Emma A1 - Vahdati, Ali A1 - Valenzuela-Lamas, Silvia A1 - Viegas, Catarina A1 - Wallner, Barbara A1 - Weinstock, Jaco A1 - Zaibert, Victor A1 - Clavel, Benoit A1 - Lepetz, Sebastien A1 - Mashkour, Marjan A1 - Helgason, Agnar A1 - Stefansson, Kari A1 - Barrey, Eric A1 - Willerslev, Eske A1 - Outram, Alan K. A1 - Librado, Pablo A1 - Orlando, Ludovic T1 - Tracking five millennia of horse management with extensive ancient genome time series JF - Cell N2 - Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management. Y1 - 2019 U6 - https://doi.org/10.1016/j.cell.2019.03.049 SN - 0092-8674 SN - 1097-4172 VL - 177 IS - 6 SP - 1419 EP - 1435 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Kihampa, Charles A1 - Nkunya, Mayunga H. H. A1 - Joseph, Cosam C. A1 - Magesa, Stephen M. A1 - Hassanali, Ahmed A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich T1 - Antimosquito and antimicrobial clerodanoids and a chlorobenzoid from Tessmannia species N2 - The clerodane diterpenoids trans-kolavenolic acid, 18-oxocleroda-3,13(E)-dien-15-oic acid, ent-(18- hydroxycarbonyl)-cleroda- 3,13(E)-dien-15-oate, 2-oxo-ent-cleroda-3,13(Z)-dien-15-oic acid and trans-2-oxo-ent-cleroda- 13(Z)-en-15-oic acid, and the chlorobenzenoid O-(3-hydroxy-4-hydroxycarbonyl-5-pentylphenyl)-3-chloro-4-methoxy-6-pentyl- 2-oxybenzoic acid were isolated from Tessmannia martiniana var pauloi and T. martiniana var matiniana. Structures were established based on interpretation of spectroscopic data. Some of the compounds exhibited significant antimosquito, antifungal and antibacterial activities. Y1 - 2010 UR - http://www.naturalproduct.us/ SN - 1934-578X ER - TY - JOUR A1 - Kihampa, Charles A1 - Nkunya, Mayunga H. H. A1 - Joseph, Cosam C. A1 - Magesa, Stephen M. A1 - Hassanali, Ahmed A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich T1 - Anti-mosquito and antimicrobial nor-halimanoids, isocoumarins and an anilinoid from Tessmannia densiflora N2 - The nor-halimane diterpenoid tessmannic acid and its methyl, 2-methylisopropyl and 1-methylbutyl esters, the unusual isocoumarins 8-hydroxy-6-methoxy-3-pentylisocoumarin and 7-chloro-8-hydroxy-6-methoxy-3-pentylisocoumarin, and 5- pentyl-3-methoxy-N-butylaniline were isolated from the stem and root bark extracts of Tessmannia densiflora Harms (Caesalpiniaceae) that showed mosquito larvicidal activity. The structures were determined on interpretation of spectroscopic data. Tessmannic acid and its methyl ester exhibited antibacterial and antifungal activity. The compounds also caused high larvae and adult Anopheles gambiae mosquitoe mortality effects, and stronger mosquito repellency than that shown by the standard repellent DEET, hence indicating Tessmannia species to be potential sources of bioactive natural products. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/00319422 U6 - https://doi.org/10.1016/j.phytochem.2009.07.024 SN - 0031-9422 ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, Marija A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, María A1 - Möller, Heiko Michael A1 - Weller, Michael G. T1 - Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺ JF - International Journal of Molecular Sciences N2 - Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - hepcidin-25 KW - copper KW - nickel KW - copper complex KW - ATCUN motif KW - metal complex KW - MS KW - NMR structure KW - metal peptide KW - metalloprotein KW - metallopeptide KW - isomerization KW - racemization KW - purity KW - reference material Y1 - 2018 U6 - https://doi.org/10.3390/ijms19082271 SN - 1422-0067 SN - 1661-6596 VL - 19 IS - 8 PB - Molecular Diversity Preservation International CY - Basel ER - TY - GEN A1 - Abbas, Ioana M. A1 - Vranic, Marija A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, María A1 - Möller, Heiko Michael A1 - Weller, Michael G. T1 - Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺ T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 701 KW - hepcidin-25 KW - copper KW - nickel KW - copper complex KW - ATCUN motif KW - metal complex KW - MS KW - NMR structure KW - metal peptide KW - metalloprotein KW - metallopeptide KW - isomerization KW - racemization KW - purity KW - reference material Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427926 SN - 1866-8372 IS - 701 ER - TY - JOUR A1 - Schubert, Mikkel A1 - Jonsson, Hakon A1 - Chang, Dan A1 - Sarkissian, Clio Der A1 - Ermini, Luca A1 - Ginolhac, Aurelien A1 - Albrechtsen, Anders A1 - Dupanloup, Isabelle A1 - Foucal, Adrien A1 - Petersen, Bent Larsen A1 - Fumagalli, Matteo A1 - Raghavan, Maanasa A1 - Seguin-Orlando, Andaine A1 - Korneliussen, Thorfinn S. A1 - Velazquez, Amhed M. V. A1 - Stenderup, Jesper A1 - Hoover, Cindi A. A1 - Rubin, Carl-Johan A1 - Alfarhan, Ahmed H. A1 - Alquraishi, Saleh A. A1 - Al-Rasheid, Khaled A. S. A1 - MacHugh, David E. A1 - Kalbfleisch, Ted A1 - MacLeod, James N. A1 - Rubin, Edward M. A1 - Sicheritz-Ponten, Thomas A1 - Andersson, Leif A1 - Hofreiter, Michael A1 - Marques-Bonet, Tomas A1 - Gilbert, M. Thomas P. A1 - Nielsen, Rasmus A1 - Excoffier, Laurent A1 - Willerslev, Eske A1 - Shapiro, Beth A1 - Orlando, Ludovic T1 - Prehistoric genomes reveal the genetic foundation and cost of horse domestication JF - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1416991111 SN - 0027-8424 VL - 111 IS - 52 SP - E5661 EP - E5669 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Librado, Pablo A1 - Gamba, Cristina A1 - Gaunitz, Charleen A1 - Sarkissian, Clio Der A1 - Pruvost, Melanie A1 - Albrechtsen, Anders A1 - Fages, Antoine A1 - Khan, Naveed A1 - Schubert, Mikkel A1 - Jagannathan, Vidhya A1 - Serres-Armero, Aitor A1 - Kuderna, Lukas F. K. A1 - Povolotskaya, Inna S. A1 - Seguin-Orlando, Andaine A1 - Lepetz, Sebastien A1 - Neuditschko, Markus A1 - Theves, Catherine A1 - Alquraishi, Saleh A. A1 - Alfarhan, Ahmed H. A1 - Al-Rasheid, Khaled A. S. A1 - Rieder, Stefan A1 - Samashev, Zainolla A1 - Francfort, Henri-Paul A1 - Benecke, Norbert A1 - Hofreiter, Michael A1 - Ludwig, Arne A1 - Keyser, Christine A1 - Marques-Bonet, Tomas A1 - Ludes, Bertrand A1 - Crubezy, Eric A1 - Leeb, Tosso A1 - Willerslev, Eske A1 - Orlando, Ludovic T1 - Ancient genomic changes associated with domestication of the horse JF - Science N2 - The genomic changes underlying both early and late stages of horse domestication remain largely unknown. We examined the genomes of 14 early domestic horses from the Bronze and Iron Ages, dating to between similar to 4.1 and 2.3 thousand years before present. We find early domestication selection patterns supporting the neural crest hypothesis, which provides a unified developmental origin for common domestic traits. Within the past 2.3 thousand years, horses lost genetic diversity and archaic DNA tracts introgressed from a now-extinct lineage. They accumulated deleterious mutations later than expected under the cost-of-domestication hypothesis, probably because of breeding from limited numbers of stallions. We also reveal that Iron Age Scythian steppe nomads implemented breeding strategies involving no detectable inbreeding and selection for coat-color variation and robust forelimbs. Y1 - 2017 U6 - https://doi.org/10.1126/science.aam5298 SN - 0036-8075 SN - 1095-9203 VL - 356 SP - 442 EP - 445 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Dieckmann, M. E. A1 - Ahmed, H. A1 - Sarri, G. A1 - Doria, D. A1 - Kourakis, I. A1 - Romagnani, L. A1 - Pohl, Martin A1 - Borghesi, M. T1 - Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer JF - Physics of plasmas N2 - Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks. Y1 - 2013 U6 - https://doi.org/10.1063/1.4801447 SN - 1070-664X VL - 20 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Alqahtani, Obaid A1 - Babics, Maxime A1 - Gorenflot, Julien A1 - Savikhin, Victoria A1 - Ferron, Thomas A1 - Balawi, Ahmed H. A1 - Paulke, Andreas A1 - Kan, Zhipeng A1 - Pope, Michael A1 - Clulow, Andrew J. A1 - Wolf, Jannic A1 - Burn, Paul L. A1 - Gentle, Ian R. A1 - Neher, Dieter A1 - Toney, Michael F. A1 - Laquai, Frederic A1 - Beaujuge, Pierre M. A1 - Collins, Brian A. T1 - Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors JF - Advanced energy materials N2 - The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes. KW - charge transport KW - domain purity KW - microscopy KW - mixed domains KW - organic solar cells KW - photovoltaic devices KW - resonant X-ray scattering KW - small molecules KW - transient spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702941 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 19 PB - Wiley-VCH CY - Weinheim ER -