TY - JOUR A1 - Kayatz, Benjamin A1 - Baroni, Gabriele A1 - Hillier, Jon A1 - Lüdtke, Stefan A1 - Heathcote, Richard A1 - Malin, Daniella A1 - van Tonder, Carl A1 - Kuster, Benjamin A1 - Freese, Dirk A1 - Hüttl, Reinhard A1 - Wattenbach, Martin T1 - Cool farm tool water BT - A global on-line tool to assess water use in crop production JF - Journal of cleaner production N2 - The agricultural sector accounts for 70% of all water consumption and poses great pressure on ground water resources. Therefore, evaluating agricultural water consumption is highly important as it allows supply chain actors to identify practices which are associated with unsustainable water use, which risk depleting current water resources and impacting future production. However, these assessments are often not feasible for crop producers as data, models and experiments are required in order to conduct them. This work introduces a new on-line agricultural water use assessment tool that provides the water footprint and irrigation requirements at field scale based on an enhanced FAO56 approach combined with a global climate, crop and soil databases. This has been included in the Cool Farm Tool - an online tool which already provides metrics for greenhouse gas emissions and biodiversity impacts and therefore allows for a more holistic assessment of environmental sustainability in farming and agricultural supply chains. The model is tested against field scale and state level water footprint data providing good results. The tool provides a practical, reliable way to assess agricultural water use, and offers a means to engage growers and stakeholders in identifying efficient water management practices. (C) 2018 The Authors. Published by Elsevier Ltd. KW - Water footprint KW - FAO56 KW - Crop water use KW - Stakeholder involvement KW - Water resource management KW - Irrigation requirements Y1 - 2018 SN - 0959-6526 SN - 1879-1786 VL - 207 SP - 1163 EP - 1179 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Boldt-Burisch, Katja A1 - Naeth, M. Anne A1 - Schneider, Uwe A1 - Schneider, Beate A1 - Hüttl, Reinhard F. T1 - Plant growth and arbuscular mycorrhizae development in oil sands processing by-products JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Soil pollutants such as hydrocarbons can induce toxic effects in plants and associated arbuscular mycorrhizal fungi (AMF). This study was conducted to evaluate if the legume Lotus corniculatus and the grass Elymus trachycaulus and arbuscular mycorrhizal fungi could grow in two oil sands processing by-products after bitumen extraction from the oil sands in northern Alberta, Canada. Substrate treatments were coarse tailings sand (CTS), a mix of dry mature fine tailings (MFT) with CTS (1: 1) and Pleistocene sandy soil (hydrocarbon free); microbial treatments were without AMF, with AMF and AMF plus soil bacteria isolated from oil sands reclamation sites. Plant biomass, root morphology, leaf water content, shoot tissue phosphorus content and mycorrhizal colonization were evaluated. Both plant species had reduced growth in CTS and tailings mix relative to sandy soil. AMF frequency and intensity in roots of E. trachycaulus was not influenced by soil hydrocarbons; however, it decreased significantly over time in roots of L. corniculatus without bacteria in CTS. Mycorrhizal inoculation alone did not significantly improve plant growth in CTS and tailings mix; however, inoculation with mycorrhizae plus bacteria led to a significantly positive response of both plant species in CTS. Thus, combined inoculation with selected mycorrhizae and bacteria led to synergistic effects. Such combinations may be used in future to improve plant growth in reclamation of CTS and tailings mix. KW - Lotus corniculatus KW - Elymus trachycaulus KW - Arbuscular mycorrhizal fungi (AMF) KW - Root morphology Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2017.11.188 SN - 0048-9697 SN - 1879-1026 VL - 621 SP - 30 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hüttl, Christine A1 - Hettrich, Cornelia A1 - Miller, Reinhard A1 - Paulke, Bernd-Reiner A1 - Henklein, Petra A1 - Rawel, Harshadrai Manilal A1 - Bier, Frank Fabian T1 - Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity JF - BMC biotechnology N2 - Background: A promising way in diagnostic and therapeutic applications is the development of peptide amphiphiles (PAs). Peptides with a palmitic acid alkylchain were designed and characterized to study the effect of the structure modifications on self-assembling capabilities and the multiple binding capacity to hemagglutinin (HA), the surface protein of influenza virus type A. The peptide amphiphiles consists of a hydrophilic headgroup with a biological functionality of the peptide sequence and a chemically conjugated hydrophobic tail. In solution they self-assemble easily to micelles with a hydrophobic core surrounded by a closely packed peptide-shell. Results: In this study the effect of a multiple peptide binding partner to the receptor binding site of HA could be determined with surface plasmon resonance measurements. The applied modification of the peptides causes signal amplification in relationship to the unmodified peptide wherein the high constant specificity persists. The molecular assembly of the peptides was characterized by the determination of critical micelle concentration (CMC) with concentration of 10(-5) M and the colloidal size distribution. Conclusion: The modification of the physico-chemical parameters by producing peptide amphiphiles form monomeric structures which enhances the binding affinity and allows a better examination of the interaction with the virus surface protein hemagglutinin. KW - CMC KW - Influenza virus detection KW - Micelle KW - PAs KW - Surface plasmon resonance Y1 - 2013 U6 - https://doi.org/10.1186/1472-6750-13-51 SN - 1472-6750 VL - 13 IS - 22 PB - BioMed Central CY - London ER -