TY - JOUR A1 - Wasof, Safaa A1 - Lenoir, Jonathan A1 - Gallet-Moron, Emilie A1 - Jamoneau, Aurelien A1 - Brunet, Jörg A1 - Cousins, Sara A. O. A1 - De Frenne, Pieter A1 - Diekmann, Martin A1 - Hermy, Martin A1 - Kolb, Annette A1 - Liira, Jaan A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Decocq, Guillaume T1 - Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe JF - Global ecology and biogeography : a journal of macroecology N2 - Aim In response to environmental changes and to avoid extinction, species may either track suitable environmental conditions or adapt to the modified environment. However, whether and how species adapt to environmental changes remains unclear. By focusing on the realized niche (i.e. the actual space that a species inhabits and the resources it can access as a result of limiting biotic factors present in its habitat), we here examine shifts in the realized-niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) of 26 common and widespread forest understorey plants across their distributional ranges. Location Temperate forests along a ca. 1800-km-long latitudinal gradient from northern France to central Sweden and Estonia. Methods We derived species' realized-niche width from a -diversity metric, which increases if the focal species co-occurs with more species. Based on the concept that species' scores in a detrended correspondence analysis (DCA) represent the locations of their realized-niche positions, we developed a novel approach to run species-specific DCAs allowing the focal species to shift its realized-niche position along the studied latitudinal gradient while the realized-niche positions of other species were held constant. Results None of the 26 species maintained both their realized-niche width and position along the latitudinal gradient. Few species (9 of 26: 35%) shifted their realized-niche width, but all shifted their realized-niche position. With increasing latitude, most species (22 of 26: 85%) shifted their realized-niche position for soil nutrients and pH towards nutrient-poorer and more acidic soils. Main conclusions Forest understorey plants shifted their realized niche along the latitudinal gradient, suggesting local adaptation and/or plasticity. This macroecological pattern casts doubt on the idea that the realized niche is stable in space and time, which is a key assumption of species distribution models used to predict the future of biodiversity, hence raising concern about predicted extinction rates. KW - Beta diversity KW - climate change KW - detrended correspondence analyses KW - Ellenberg indicator values KW - forest understorey plant species KW - niche optimum KW - niche width KW - plant community KW - realized niche Y1 - 2013 U6 - https://doi.org/10.1111/geb.12073 SN - 1466-822X VL - 22 IS - 10 SP - 1130 EP - 1140 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Verheyen, Kris A1 - Baeten, Lander A1 - De Frenne, Pieter A1 - Bernhardt-Römermann, Markus A1 - Brunet, Jorg A1 - Cornelis, Johnny A1 - Decocq, Guillaume A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Kirby, Keith J. A1 - Naaf, Tobias A1 - Peterken, George A1 - Petrik, Petr A1 - Pfadenhauer, Joerg A1 - Van Calster, Hans A1 - Walther, Gian-Reto A1 - Wulf, Monika A1 - Verstraeten, Gorik T1 - Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests JF - The journal of ecology N2 - 1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or sampling along large deposition gradients, is the occurrence of temporal or spatial confounding factors. 2. We were able to assess the contribution of N deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach. Data from 1205 (semi-)permanent vegetation plots taken from 23 rigorously selected understorey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe were compiled and related to various local and regional driving factors, including the rate of atmospheric N deposition, the change in large herbivore densities and the change in canopy cover and composition. 3. Although no directional change in species richness occurred, there was considerable floristic turnover in the understorey plant community and a shift in species composition towards more shade-tolerant and nutrient-demanding species. However, atmospheric N deposition was not important in explaining the observed eutrophication signal. This signal seemed mainly related to a shift towards a denser canopy cover and a changed canopy species composition with a higher share of species with more easily decomposed litter. 4. Synthesis. Our multi-site approach clearly demonstrates that one should be cautious when drawing conclusions about the impact of atmospheric N deposition based on the interpretation of plant community shifts in single sites or regions due to other, concurrent, ecological changes. Even though the effects of chronically increased N deposition on the forest plant communities are apparently obscured by the effects of canopy changes, the accumulated N might still have a significant impact. However, more research is needed to assess whether this N time bomb will indeed explode when canopies will open up again. KW - atmospheric deposition KW - determinants of plant community diversity and structure KW - Ellenberg indicator values KW - forest herbs KW - forest management KW - large herbivores KW - north-western Europe KW - resurveys KW - (semi-)permanent plots Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2745.2011.01928.x SN - 0022-0477 VL - 100 IS - 2 SP - 352 EP - 365 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Vanneste, Thomas A1 - Valdes, Alicia A1 - Verheyen, Kris A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Andrieu, Emilie A1 - Brunet, Jorg A1 - Cousins, Sara A. O. A1 - Deconchat, Marc A1 - De Smedt, Pallieter A1 - Diekmann, Martin A1 - Ehrmann, Steffen A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lenoir, Jonathan A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Paal, Taavi A1 - Wulf, Monika A1 - Decocq, Guillaume A1 - De Frenne, Pieter T1 - Functional trait variation of forest understorey plant communities across Europe JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved. KW - Agricultural landscapes KW - Biogeography KW - Community ecology KW - Forest understorey KW - Functional trait diversity KW - Fragmentation KW - Global environmental change KW - Landscape connectivity KW - Macroclimatic gradient KW - Multi-scale analysis Y1 - 2018 U6 - https://doi.org/10.1016/j.baae.2018.09.004 SN - 1439-1791 SN - 1618-0089 VL - 34 SP - 1 EP - 14 PB - Elsevier GmbH CY - München ER - TY - JOUR A1 - Plue, Jan A1 - De Frenne, Pieter A1 - Acharya, Kamal P. A1 - Brunet, Jorg A1 - Chabrerie, Olivier A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente J. A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lemke, Isgard A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Shevtsova, Anna A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Cousins, Sara A. O. T1 - Climatic control of forest herb seed banks along a latitudinal gradient JF - Global ecology and biogeography : a journal of macroecology N2 - Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses. KW - Climate change KW - interspecific variation KW - plant-climate interaction KW - seed longevity KW - seed production KW - temperate deciduous forest KW - temperature Y1 - 2013 U6 - https://doi.org/10.1111/geb.12068 SN - 1466-822X SN - 1466-8238 VL - 22 IS - 10 SP - 1106 EP - 1117 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Plue, Jan A1 - De Frenne, Pieter A1 - Acharya, Kamal A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente J. A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lemke, Isgard A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Cousins, Sara A. O. T1 - Where does the community start, and where does it end? BT - including the seed bank to reassess forest herb layer responses to the environment JF - Journal of vegetation science N2 - QuestionBelow-ground processes are key determinants of above-ground plant population and community dynamics. Still, our understanding of how environmental drivers shape plant communities is mostly based on above-ground diversity patterns, bypassing below-ground plant diversity stored in seed banks. As seed banks may shape above-ground plant communities, we question whether concurrently analysing the above- and below-ground species assemblages may potentially enhance our understanding of community responses to environmental variation. LocationTemperate deciduous forests along a 2000km latitudinal gradient in NW Europe. MethodsHerb layer, seed bank and local environmental data including soil pH, canopy cover, forest cover continuity and time since last canopy disturbance were collected in 129 temperate deciduous forest plots. We quantified herb layer and seed bank diversity per plot and evaluated how environmental variation structured community diversity in the herb layer, seed bank and the combined herb layer-seed bank community. ResultsSeed banks consistently held more plant species than the herb layer. How local plot diversity was partitioned across the herb layer and seed bank was mediated by environmental variation in drivers serving as proxies of light availability. The herb layer and seed bank contained an ever smaller and ever larger share of local diversity, respectively, as both canopy cover and time since last canopy disturbance decreased. Species richness and -diversity of the combined herb layer-seed bank community responded distinctly differently compared to the separate assemblages in response to environmental variation in, e.g. forest cover continuity and canopy cover. ConclusionsThe seed bank is a below-ground diversity reservoir of the herbaceous forest community, which interacts with the herb layer, although constrained by environmental variation in e.g. light availability. The herb layer and seed bank co-exist as a single community by means of the so-called storage effect, resulting in distinct responses to environmental variation not necessarily recorded in the individual herb layer or seed bank assemblages. Thus, concurrently analysing above- and below-ground diversity will improve our ecological understanding of how understorey plant communities respond to environmental variation. KW - Above-ground KW - Below-ground KW - Canopy KW - Disturbance KW - Diversity KW - Light availability KW - NWEurope KW - Plant community KW - Species co-existence KW - Storage effect Y1 - 2017 U6 - https://doi.org/10.1111/jvs.12493 SN - 1100-9233 SN - 1654-1103 VL - 28 IS - 2 SP - 424 EP - 435 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Baeten, Lander A1 - Midolo, Gabriele A1 - Blondeel, Haben A1 - Depauw, Leen A1 - Landuyt, Dries A1 - Maes, Sybryn L. A1 - De Lombaerde, Emiel A1 - Caron, Maria Mercedes A1 - Vellend, Mark A1 - Brunet, Joerg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Dirnboeck, Thomas A1 - Doerfler, Inken A1 - Durak, Tomasz A1 - De Frenne, Pieter A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Lenoir, Jonathan A1 - Li, Daijiang A1 - Malis, Frantisek A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Petrik, Petr A1 - Reczynska, Kamila A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Swierkosz, Krzysztof A1 - Van Calster, Hans A1 - Vild, Ondrej A1 - Wagner, Eva Rosa A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Global environmental change effects on plant community composition trajectories depend upon management legacies JF - Global change biology N2 - The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites’ contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. KW - biodiversity change KW - climate change KW - disturbance regime KW - forestREplot KW - herbaceous layer KW - management intensity KW - nitrogen deposition KW - plant functional traits KW - time lag KW - vegetation resurvey Y1 - 2017 U6 - https://doi.org/10.1111/gcb.14030 SN - 1354-1013 SN - 1365-2486 VL - 24 IS - 4 SP - 1722 EP - 1740 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Maes, Sybryn L. A1 - Perring, Michael P. A1 - Vanhellemont, Margot A1 - Depauw, Leen A1 - Van den Bulcke, Jan A1 - Brumelis, Guntis A1 - Brunet, Jorg A1 - Decocq, Guillaume A1 - den Ouden, Jan A1 - Härdtle, Werner A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Heinrichs, Steffi A1 - Jaroszewicz, Bogdan A1 - Kopecký, Martin A1 - Malis, Frantisek A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Environmental drivers interactively affect individual tree growth across temperate European forests JF - Global change biology N2 - Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to localland‐use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global‐change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global‐change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global‐change drivers, with species ‐specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus’ growth, high-lighting species‐specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus’ growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal‐change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth. KW - basal area increment KW - climate change KW - Fagus KW - Fraxinus KW - historical ecology KW - nitrogen deposition KW - Quercus KW - tree-ring analysis Y1 - 2018 U6 - https://doi.org/10.1111/gcb.14493 SN - 1354-1013 SN - 1365-2486 VL - 25 IS - 1 SP - 201 EP - 217 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Maes, Sybryn L. A1 - Blondeel, Haben A1 - Perring, Michael P. A1 - Depauw, Leen A1 - Brumelis, Guntis A1 - Brunet, Jörg A1 - Decocq, Guillaume A1 - den Ouden, Jan A1 - Haerdtle, Werner A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Heinrichs, Steffi A1 - Jaroszewicz, Bogdan A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Malis, Frantisek A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests JF - Forest ecology and management N2 - Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-ratio (C/N), litter mass, bio-available and total phosphorus, pH(KCI)and soil organic matter. We collected mineral soil and litter layer samples, and measured site characteristics for 190 20 x 20 m European mixed forest plots across gradients of litter quality (derived from the canopy species composition) and atmospheric deposition, and for different categories of past land cover and past forest management. We accounted for the effects of parent material on topsoil conditions by clustering our plots into three soil type groups based on texture and carbonate concentration. We found that litter quality was a stronger driver of topsoil conditions compared to land-use history or atmospheric deposition, while the soil type also affected several topsoil conditions here. Plots with higher litter quality had soils with a higher proportion of exchangeable base cations, and total phosphorus, and lower C/N-ratios and litter mass. Furthermore, the observed litter quality effects on the topsoil were independent from the regional nitrogen deposition or the soil type, although the soil type likely (co)-determined canopy composition and thus litter quality to some extent in the investigated plots. Litter quality effects on topsoil phosphorus concentrations did interact with past land cover, highlighting the need to consider land-use history when evaluating canopy effects on soil conditions. We conclude that forest managers can use the canopy composition as an important tool for influencing topsoil conditions, although soil type remains an important factor to consider. KW - Soil fertility KW - Ancient forest KW - Post-agricultural forest KW - Coppice KW - High forest KW - pH KW - Phosphorus KW - Base cations KW - Nutrient cycling KW - Decomposition Y1 - 2019 U6 - https://doi.org/10.1016/j.foreco.2018.10.056 SN - 0378-1127 SN - 1872-7042 VL - 433 SP - 405 EP - 418 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lemke, Isgard H. A1 - Kolb, Annette A1 - Graae, Bente J. A1 - De Frenne, Pieter A1 - Acharya, Kamal P. A1 - Blandino, Cristina A1 - Brunet, Jorg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Liira, Jaan A1 - Schmucki, Reto A1 - Shevtsova, Anna A1 - Verheyen, Kris A1 - Diekmann, Martin T1 - Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient JF - Plant ecology : an international journal N2 - Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a similar to 1800-2500 km latitudinal gradient. Within each of 9-10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales-due to phenotypic plasticity and/or underlying genetic diversity-possibly affecting species response to global environmental change. KW - Climate change KW - Global environmental change KW - Milium effusum KW - Phenotypic plasticity KW - Intraspecific variation KW - Stachys sylvatica Y1 - 2015 U6 - https://doi.org/10.1007/s11258-015-0534-0 SN - 1385-0237 SN - 1573-5052 VL - 216 IS - 11 SP - 1523 EP - 1536 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Graae, Bente Jessen A1 - Verheyen, Kris A1 - Kolb, Annette A1 - van der Veken, Sebastian A1 - Heinken, Thilo A1 - Chabrerie, Olivier A1 - Diekmann, Martin A1 - Valtinat, Karin A1 - Zindel, Renate A1 - Karlsson, Elisabeth A1 - Ström, Lotta A1 - Decocq, Guillaume A1 - Hermy, Martin A1 - Baskin, Carol C. T1 - Germination requirements and seed mass of slow- and fast-colonizing temperate forest herbs along a latitudinal gradient N2 - Predictions on displacement of suitable habitats due to climate change suggest that plant species with poor colonization ability may be unable to move fast enough to match forecasted climate-induced changes in habitat distribution. However, studies on early Holocene plant migration show fast migration of many plant species that are poor colonizers today. We hypothesize that warmer temperatures during the early Holocene yielded higher seed quality, contributing to explaining the fast migration. We studied how the 3 seed quality variables, seed mass, germinability, and requirements for break of seed dormancy, vary for seeds of 11 forest herb species with varying colonization capacity collected along a 1400-km latitudinal gradient. Within species, seed mass showed a positive correlation with latitude, whereas germinability was more positively correlated with temperature (growing degree hours obtained at time of seed collection). Only slow-colonizing species increased germinability with temperature, whereas only fast-colonizing species increased germinability with latitude. These interactions were only detectable when analyzing germinability of the seeds, even though this trait and seed mass were correlated. The requirement for dormancy break did not correlate with latitude or temperature. The results indicate that seed development of slow colonizers may be favoured by a warmer climate, which in turn may be important for their migration capacity. Y1 - 2009 UR - http://www.bioone.org/loi/ecos U6 - https://doi.org/10.2980/16-2-3234 SN - 1195-6860 ER - TY - JOUR A1 - De Lombaerde, Emiel A1 - Verheyen, Kris A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Van Calster, Hans A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Durak, Tomasz A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Kopecky, Martin A1 - Lenoir, Jonathan A1 - Macek, Martin A1 - Máliš, František A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Petřík, Petr A1 - Reczyńska, Kamila A1 - Schmidt, Wolfgang A1 - Swierkosz, Krzysztof A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Baetena, Lander T1 - Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Understorey plant communities play a key role in the functioning of forest ecosystems. Under favourable environmental conditions, competitive understorey species may develop high abundances and influence important ecosystem processes such as tree regeneration. Thus, understanding and predicting the response of competitive understorey species as a function of changing environmental conditions is important for forest managers. In the absence of sufficient temporal data to quantify actual vegetation changes, space-for-time (SFT) substitution is often used, i.e. studies that use environmental gradients across space to infer vegetation responses to environmental change over time. Here we assess the validity of such SFT approaches and analysed 36 resurvey studies from ancient forests with low levels of recent disturbances across temperate Europe to assess how six competitive understorey plant species respond to gradients of overstorey cover, soil conditions, atmospheric N deposition and climatic conditions over space and time. The combination of historical and contemporary surveys allows (i) to test if observed contemporary patterns across space are consistent at the time of the historical survey, and, crucially, (ii) to assess whether changes in abundance over time given recorded environmental change match expectations from patterns recorded along environmental gradients in space. We found consistent spatial relationships at the two periods: local variation in soil variables and overstorey cover were the best predictors of individual species’ cover while interregional variation in coarse-scale variables, i.e. N deposition and climate, was less important. However, we found that our SFT approach could not accurately explain the large variation in abundance changes over time. We thus recommend to be cautious when using SFT substitution to infer species responses to temporal changes. KW - Temperate forest KW - Herb layer KW - Tree regeneration KW - Global change KW - Nitrogen deposition KW - Canopy KW - Spatiotemporal resurvey data KW - Cover abundance KW - Chronosequence KW - forestREplot Y1 - 2018 U6 - https://doi.org/10.1016/j.baae.2018.05.013 SN - 1439-1791 SN - 1618-0089 VL - 30 SP - 52 EP - 64 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - de Frenne, Pieter A1 - Kolb, Annette A1 - Verheyen, Kris A1 - Brunet, Johanne A1 - Chabrerie, Olivier A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Eriksson, Ove A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Jõgar, Ülle A1 - Stanton, Sara A1 - Quataert, Paul A1 - Zindel, Renate A1 - Zobel, Martin A1 - Graae, Bente Jessen T1 - Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs N2 - Aim To investigate the effect of temperature, latitude and local environment on the reproductive traits of widespread perennial forest herbs to better understand the potential impacts of rising temperatures on their population dynamics and colonization capacities. Location Six regions along a latitudinal gradient from France to Sweden. Methods Within each region, we collected data from three to five populations of up to six species. For each species, several variables were recorded in each region (temperature, latitude) and population (local abiotic and biotic environmental variables), and seed production and germination were estimated. Resource investment in reproduction (RIR) was quantified as seed number ¥ seed mass, while germinable seed output (GSO) was expressed as seed number ¥ germination percentage.We performed linear regression and mixed effect models to investigate the effects of temperature (growing degree hours), latitude and local abiotic and biotic environment on RIR and GSO. Results Temperature and latitude explained most of the variation in RIR and GSO for early flowering species with a northerly distribution range edge (Anemone nemorosa, Paris quadrifolia and Oxalis acetosella). Reproduction of the more southerly distributed species (Brachypodium sylvaticum, Circaea lutetiana and Primula elatior), in contrast, was independent of temperature/latitude. In the late summer species, B. sylvaticum and C. lutetiana, variation in RIR and GSO was best explained by local environmental variables, while none of the investigated variables appeared to be related to reproduction in P. elatior. Main conclusions We showed that reproduction of only two early flowering, northerly distributed species was related to temperature. This suggests that the potential reproductive response of forest herbs to climate warming partly depends on their phenology and distribution, but also that the response is to some extent species dependent. These findings should be taken into account when predictions about future shifts in distribution range are made. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/118545893/home U6 - https://doi.org/10.1111/j.1466-8238.2009.00487.x SN - 1466-822X ER - TY - JOUR A1 - de Frenne, Pieter A1 - Graae, Bente Jessen A1 - Kolb, Annette A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Dhondt, Rob A1 - Diekmann, Martin A1 - Eriksson, Olof A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Jögar, uelle A1 - Saguez, Robert A1 - Shevtsova, Anna A1 - Stanton, Sharon A1 - Zindel, Renate A1 - Zobel, Martin A1 - Verheyen, Kris T1 - Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L. N2 - Climate warming is already influencing plant migration in different parts of the world. Numerous models have been developed to forecast future plant distributions. Few studies, however, have investigated the potential effect of warming on the reproductive output of plants. Understorey forest herbs in particular, have received little attention in the debate on climate change impacts. This study focuses on the effect of temperature on sexual reproductive output (number of seeds, seed mass, germination percentage and seedling mass) of Anemone nemorosa L., a model species for slow colonizing herbaceous forest plants. We sampled seeds of A. nemorosa in populations along a 2400 km latitudinal gradient from northern France to northern Sweden during three growing seasons (2005,2006 and 2008). This study design allowed us to isolate the effects of accumulated temperature (Growing Degree Hours; GDH) from latitude and the local abiotic and biotic environment. Germination and seed sowing trials were performed in incubators, a greenhouse and under field conditions in a forest. Finally, we disentangled correlations between the different reproductive traits of A. nemorosa along the latitudinal gradient. We found a clear positive relationship between accumulated temperature and seed and seedling traits: reproductive output of A. nemorosa improved with increasing GDH along the latitudinal gradient. Seed mass and seedling mass, for instance, increased by 9.7% and 10.4%, respectively, for every 1000 degrees C h increase in GDH. We also derived strong correlations between several seed and seedling traits both under field conditions and in incubators. Our results indicate that seed mass, incubator-based germination percentage (Germ%(Inc)) and the output of germinable seeds (product of number of seeds and Germ%(Inc) divided by 100) from plants grown along a latitudinal gradient (i.e. at different temperature regimes) provide valuable proxies to parameterize key population processes in models. We conclude that (1) climate warming may have a pronounced positive impact on sexual reproduction of A. nemorosa and (2) climate models forecasting plant distributions would benefit from including the temperature sensitivity of key seed traits and population processes. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/03781127 U6 - https://doi.org/10.1016/j.foreco.2009.04.038 SN - 0378-1127 ER - TY - JOUR A1 - De Frenne, Pieter A1 - Graae, Bente J. A1 - Kolb, Annette A1 - Shevtsova, Anna A1 - Baeten, Lander A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Dhondt, Rob A1 - Diekmann, Martin A1 - Gruwez, Robert A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Oster, Mathias A1 - Saguez, Robert A1 - Stanton, Sharon A1 - Tack, Wesley A1 - Vanhellemont, Margot A1 - Verheyen, Kris T1 - An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient JF - Ecography : pattern and diversity in ecology ; research papers forum N2 - We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900-2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4% increase in plant height with every degree northward shift (almost a two-fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three-factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring-flowering Anemone was affected more by temperature, whereas early-summer flowering Milium was affected more by local and other latitude-related factors. Finally, previously reported cross-species correlations between LHS traits and latitude were generally unsupported by our within-species approach. Y1 - 2011 U6 - https://doi.org/10.1111/j.1600-0587.2010.06399.x SN - 0906-7590 VL - 34 IS - 1 SP - 132 EP - 140 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - De Frenne, Pieter A1 - Graae, Bente J. A1 - Brunet, Jörg A1 - Shevtsova, Anna A1 - De Schrijver, An A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Hermy, Martin A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Verheyen, Kris T1 - The response of forest plant regeneration to temperature variation along a latitudinal gradient JF - Annals of botany N2 - The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics. KW - Anemone nemorosa KW - climate change KW - common garden KW - growth chambers KW - latitudinal gradient KW - local adaptation KW - Milium effusum KW - plant regeneration KW - range edges KW - recruitment KW - seedling establishment KW - temperature Y1 - 2012 U6 - https://doi.org/10.1093/aob/mcs015 SN - 0305-7364 VL - 109 IS - 5 SP - 1037 EP - 1046 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - De Frenne, Pieter A1 - Brunet, Jorg A1 - Shevtsova, Anna A1 - Kolb, Annette A1 - Graae, Bente J. A1 - Chabrerie, Olivier A1 - Cousins, Sara Ao A1 - Decocq, Guillaume A1 - De Schrijver, An A1 - Diekmann, Martin A1 - Gruwez, Robert A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Tack, Wesley A1 - Willaert, Justin A1 - Verheyen, Kris T1 - Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient JF - Global change biology N2 - Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics. KW - climate change KW - common garden experiment KW - forest understorey KW - latitude KW - local adaptation KW - open-top chambers KW - phenotypic plasticity KW - pot experiment Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02449.x SN - 1354-1013 VL - 17 IS - 10 SP - 3240 EP - 3253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - De Frenne, Pieter A1 - Baeten, Lander A1 - Graae, Bente J. A1 - Brunet, Jorg A1 - Wulf, Monika A1 - Orczewska, Anna A1 - Kolb, Annette A1 - Jansen, Ivy A1 - Jamoneau, Aurelien A1 - Jacquemyn, Hans A1 - Hermy, Martin A1 - Diekmann, Martin A1 - De Schrijver, An A1 - De Sanctis, Michele A1 - Decocq, Guillaume A1 - Cousins, Sara A. O. A1 - Verheyen, Kris T1 - Interregional variation in the floristic recovery of post-agricultural forests JF - The journal of ecology N2 - 1. Worldwide, the floristic composition of temperate forests bears the imprint of past land use for decades to centuries as forests regrow on agricultural land. Many species, however, display significant interregional variation in their ability to (re)colonize post-agricultural forests. This variation in colonization across regions and the underlying factors remain largely unexplored. 2. We compiled data on 90 species and 812 species x study combinations from 18 studies across Europe that determined species' distribution patterns in ancient (i.e. continuously forested since the first available land use maps) and post-agricultural forests. The recovery rate (RR) of species in each landscape was quantified as the log-response ratio of the percentage occurrence in post-agricultural over ancient forest and related to the species-specific life-history traits and local (soil characteristics and light availability) and regional factors (landscape properties as habitat availability, time available for colonization, and climate). 3. For the herb species, we demonstrate a strong (interactive) effect of species' life-history traits and forest habitat availability on the RR of post-agricultural forest. In graminoids, however, none of the investigated variables were significantly related to the RR. 4. The better colonizing species that mainly belonged to the short-lived herbs group showed the largest interregional variability. Their recovery significantly increased with the amount of forest habitat within the landscape, whereas, surprisingly, the time available for colonization, climate, soil characteristics and light availability had no effect. 5. Synthesis. By analysing 18 independent studies across Europe, we clearly showed for the first time on a continental scale that the recovery of short-lived forest herbs increased with the forest habitat availability in the landscape. Small perennial forest herbs, however, were generally unsuccessful in colonizing post-agricultural forest even in relatively densely forested landscapes. Hence, our results stress the need to avoid ancient forest clearance to preserve the typical woodland flora. KW - ancient forest KW - colonization capacity KW - forest herbs KW - functional traits KW - habitat fragmentation KW - habitat loss KW - life-history traits KW - meta-analysis KW - plant population and community dynamics KW - secondary succession Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2745.2010.01768.x SN - 0022-0477 VL - 99 IS - 2 SP - 600 EP - 609 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - De Frenne, P. A1 - Kolb, Annette A1 - Graae, Benete Jessen A1 - Decocq, Guillaume A1 - Baltora, S. A1 - De Schrijver, A. A1 - Brunet, J. A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Dhondt, Rob A1 - Diekmann, Martin A1 - Gruwez, R. A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Liira, J. A1 - Saguez, R. A1 - Shevtsova, Anna A1 - Baskin, Carol C. A1 - Verheyen, Kris T1 - A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa JF - Plant biology N2 - The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours > 5 degrees C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. KW - Collection date KW - latitude KW - nutrient stoichiometry KW - seed nitrogen KW - seed predation KW - seed provisioning KW - sexual reproduction KW - wood anemone Y1 - 2011 U6 - https://doi.org/10.1111/j.1438-8677.2010.00404.x SN - 1435-8603 VL - 13 IS - 3 SP - 493 EP - 501 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente Jessen A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Lenoir, Jonathan A1 - Naaf, Tobias A1 - Plue, Jan A1 - Selvi, Federico A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change JF - Forest ecology and management N2 - Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved. KW - Acer KW - Regeneration KW - Latitudinal gradient KW - Temperature KW - Precipitation KW - Competition Y1 - 2015 U6 - https://doi.org/10.1016/j.foreco.2015.01.003 SN - 0378-1127 SN - 1872-7042 VL - 342 SP - 21 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bernhardt-Römermann, Markus A1 - Baeten, Lander A1 - Craven, Dylan A1 - De Frenne, Pieter A1 - Hedl, Radim A1 - Lenoir, Jonathan A1 - Bert, Didier A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Dierschke, Hartmut A1 - Dirnboeck, Thomas A1 - Dörfler, Inken A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Keczynski, Andrzej A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Macek, Martin A1 - Malis, Frantisek A1 - Mirtl, Michael A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Toth, Zoltan A1 - Van Calster, Hans A1 - Verstraeten, Gorik A1 - Vladovic, Jozef A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Drivers of temporal changes in temperate forest plant diversity vary across spatial scales JF - Global change biology N2 - Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions. KW - atmospheric nitrogen deposition KW - evenness KW - forestREplot KW - forest management KW - game browsing KW - Shannon diversity KW - spatiotemporal resurvey data KW - species richness Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12993 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 10 SP - 3726 EP - 3737 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Baeten, Lander A1 - Warton, David I. A1 - Van Calster, Hans A1 - De Frenne, Pieter A1 - Verstraeten, Gorik A1 - Bonte, Dries A1 - Bernhardt-Römermann, Markus A1 - Cornelis, Johnny A1 - Decocq, Guillaume A1 - Eriksson, Ove A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Kirby, Keith J. A1 - Naaf, Tobias A1 - Petrik, Petr A1 - Walther, Gian-Reto A1 - Wulf, Monica A1 - Verheyen, Kris T1 - A model-based approach to studying changes in compositional heterogeneity JF - Methods in ecology and evolution : an official journal of the British Ecological Society Y1 - 2014 SN - 2041-210X SN - 2041-2096 VL - 5 IS - 2 SP - 156 EP - 164 PB - Wiley-Blackwell CY - Hoboken ER -