TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Abdullahu, Leonora A1 - Grubert, Lutz A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z -> E Azobenzene Isomerization JF - CHEM N2 - Whereas the reversible reduction of azobenzenes has been known for decades, their oxidation is destructive and as a result has been notoriously overlooked. Here, we show that a chain reaction leading to quantitative Z -> E isomerization can be initiated before reaching the destructive anodic peak potential. This hole-catalyzed pathway is accessible to all azobenzenes, without exception, and offers tremendous advantages over the recently reported reductive, radical-anionic pathway because it allows for convenient chemical initiation without the need for electrochemical setups and in the presence of air. In addition, catalytic amounts of metal-free sensitizers, such as methylene blue, can be used as excited-state electron acceptors, enabling a shift of the excitation wavelength to the far red of the azobenzene absorption (up to 660 nm) and providing quantum yields exceeding unity (up to 200%). Our approach will boost the efficiency and sensitivity of optically dense liquid-crystalline and solid photo-switchable materials. Y1 - 2018 U6 - https://doi.org/10.1016/j.chempr.2018.06.002 SN - 2451-9294 VL - 4 IS - 7 SP - 1740 EP - 1755 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Utecht, Manuel A1 - Mutruc, Dragos A1 - Titov, Evgenii A1 - Schwarz, Jutta A1 - Grubert, Lutz A1 - Bleger, David A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Electrocatalytic Z -> E Isomerization of Azobenzenes JF - Journal of the American Chemical Society N2 - A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z -> E) by the same wavelength of light, which normally triggers E -> Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.6b10822 SN - 0002-7863 VL - 139 IS - 1 SP - 335 EP - 341 PB - American Chemical Society CY - Washington ER -