TY - JOUR A1 - Birkhofer, Klaus A1 - Schöning, Ingo A1 - Alt, Fabian A1 - Herold, Nadine A1 - Klarner, Bernhard A1 - Maraun, Mark A1 - Marhan, Sven A1 - Oelmann, Yvonne A1 - Wubet, Tesfaye A1 - Yurkov, Andrey A1 - Begerow, Dominik A1 - Berner, Doreen A1 - Buscot, Francois A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Ehnes, Roswitha B. A1 - Erdmann, Georgia A1 - Fischer, Christiane A1 - Fösel, Baerbel A1 - Groh, Janine A1 - Gutknecht, Jessica A1 - Kandeler, Ellen A1 - Lang, Christa A1 - Lohaus, Gertrud A1 - Meyer, Annabel A1 - Nacke, Heiko A1 - Näther, Astrid A1 - Overmann, Jörg A1 - Polle, Andrea A1 - Pollierer, Melanie M. A1 - Scheu, Stefan A1 - Schloter, Michael A1 - Schulze, Ernst-Detlef A1 - Schulze, Waltraud X. A1 - Weinert, Jan A1 - Weisser, Wolfgang W. A1 - Wolters, Volkmar A1 - Schrumpf, Marion T1 - General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types JF - PLoS one N2 - Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0043292 SN - 1932-6203 VL - 7 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Näther, Astrid A1 - Fösel, Bärbel U. A1 - Nägele, Verena A1 - Wüst, Pia K. A1 - Weinert, Jan A1 - Bonkowski, Michael A1 - Alt, Fabian A1 - Oelmann, Yvonne A1 - Polle, Andrea A1 - Lohaus, Gertrud A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Pfeiffer, Simone A1 - Renner, Swen A1 - Schöning, Ingo A1 - Weisser, Wolfgang W. A1 - Wells, Konstans A1 - Fischer, Markus A1 - Overmann, Jörg A1 - Friedrich, Michael W. T1 - Environmental factors affect acidobacterial communities below the subgroup level in Grassland and Forest Soils JF - Applied and environmental microbiology N2 - In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered. Y1 - 2012 U6 - https://doi.org/10.1128/AEM.01325-12 SN - 0099-2240 VL - 78 IS - 20 SP - 7398 EP - 7406 PB - American Society for Microbiology CY - Washington ER -