TY - BOOK A1 - Janke, Thomas A1 - Wuttke, Hans A1 - Dietsch, Volker A1 - Janßen, Martin A1 - König, Gerhard A1 - Mentzendorff, Arne A1 - Simanowsky, Ursula A1 - Wuttke, Joachim T1 - Mathematik : Stochastik ; Orientierungswissen Analytische Geometrie ; Gymnasiale Oberstufe, NRW [Schülerbuch] Y1 - 2005 SN - 3-464-57213-7 PB - Cornelsen CY - Berlin ER - TY - BOOK A1 - Janke, Thomas A1 - Wuttke, Hans A1 - Dietsch, Volker A1 - Janßen, Martin A1 - König, Gerhard A1 - Mentzendorff, Arne A1 - Simanowsky, Ursula A1 - Wuttke, Joachim T1 - Mathematik : Stochastik ; Handreichungen für den Unterricht ; Gymnasiale Oberstufe [Schülerbuch] Y1 - 2005 SN - 3-464-57288-9 PB - Cornelsen CY - Berlin ER - TY - BOOK A1 - Janke, Thomas A1 - Wuttke, Hans A1 - Dietsch, Volker A1 - Janßen, Martin A1 - König, Gerhard A1 - Mentzendorff, Arne A1 - Simanowsky, Ursula A1 - Wuttke, Joachim T1 - Mathematik : Stochastik ; Orientierungswissen Analytische Geometrie ; Handreichungen für den Unterricht ; Gymnasiale Oberstufe NRW [Schülerbuch] Y1 - 2005 SN - 3-464-57283-8 PB - Cornelsen CY - Berlin ER - TY - JOUR A1 - von Loeffelholz, Christian A1 - Lieske, Stefanie A1 - Neuschaefer-Rube, Frank A1 - Willmes, Diana M. A1 - Raschzok, Nathanael A1 - Sauer, Igor M. A1 - König, Jörg A1 - Fromm, Martin F. A1 - Horn, Paul A1 - Chatzigeorgiou, Antonios A1 - Pathe-Neuschaefer-Rube, Andrea A1 - Jordan, Jens A1 - Pfeiffer, Andreas F. H. A1 - Mingrone, Geltrude A1 - Bornstein, Stefan R. A1 - Stroehle, Peter A1 - Harms, Christoph A1 - Wunderlich, F. Thomas A1 - Helfand, Stephen L. A1 - Bernier, Michel A1 - de Cabo, Rafael A1 - Shulman, Gerald I. A1 - Chavakis, Triantafyllos A1 - Püschel, Gerhard Paul A1 - Birkenfeld, Andreas L. T1 - The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism BT - official journal of the American Association for the Study of Liver Diseases JF - Hepatology N2 - Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. Conclusion: Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450. Y1 - 2017 U6 - https://doi.org/10.1002/hep.29089 SN - 0270-9139 SN - 1527-3350 VL - 66 IS - 2 SP - 616 EP - 630 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Henkel, Janin A1 - Alfine, Eugenia A1 - Saín, Juliana A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, José Pedro A1 - König, Jeannette A1 - Stuhlmann, Christin A1 - Vahrenbrink, Madita A1 - Jonas, Wenke A1 - Kleinridders, André A1 - Püschel, Gerhard Paul T1 - Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol JF - Nutrients N2 - While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease. KW - non-alcoholic fatty liver disease (NAFLD) KW - NASH KW - cholesterol KW - PUFA KW - inflammation KW - oxidative stress Y1 - 2018 U6 - https://doi.org/10.3390/nu10091326 SN - 2072-6643 VL - 10 IS - 9 SP - 1 EP - 17 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER -