TY - JOUR A1 - Garnier, Sebastien A1 - Laschewsky, Andre T1 - Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents. KW - macrosurfactants KW - block copolymers KW - micelles KW - inverse micelles KW - sulfoxide Y1 - 2006 U6 - https://doi.org/10.1007/s00396-006-1484-9 SN - 0303-402X VL - 284 SP - 1243 EP - 1254 PB - Springer CY - Berlin ER - TY - JOUR A1 - Laschewsky, André A1 - Garnier, Sebastien A1 - Kirsten, Juliane A1 - Mertoglu, Murat A1 - Skrabania, Katja A1 - Lutz, Jean-Francois T1 - Comb-like polymeric surfactants by combining block and graft copolymer architectures Y1 - 2006 SN - 0065-7727 ER - TY - JOUR A1 - Delorme, Nicolas A1 - Dubois, Monique A1 - Garnier, Sebastien A1 - Laschewsky, André A1 - Weinkamer, Richard A1 - Zemb, Thomas A1 - Fery, Andreas T1 - Surface immobilization and mechanical properties of catanionic hollow faceted polyhedrons N2 - We report here for the first time on surface immobilization of hollow faceted polyhedrons formed from catanionic surfactant mixtures. We find that electrostatic interaction with the substrate dominates their adhesion behavior. Using polyelectrolyte coated surfaces with tailored charge densities, polyhedrons can thus be immobilized without complete spreading, which allows for further study of their mechanical properties using AFM force measurements. The elastic response of individual polyhedrons can be locally resolved, showing pronounced differences in stiffness between faces and vertexes of the structure, which makes these systems interesting as models for structurally similar colloidal scale objects such as viruses, where such effects are predicted but cannot be directly observed due to the smaller dimensions. Elastic constants of the wall material are estimated using shell and plate deformation models and are found to be a factor of 5 larger than those for neutral lipidic bilayers in the gel state. We discuss the molecular origins of this high stiffness Y1 - 2006 UR - http://pubs.acs.org/journal/jpcbfk U6 - https://doi.org/10.1021/Jp054473+ SN - 1520-1758 ER - TY - JOUR A1 - Garnier, Sebastien A1 - Laschewsky, André T1 - New amphiphilic diblock copolymers : surfactant properties and solubilization in their micelles N2 - Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g(.)L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks Y1 - 2006 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La0600595 SN - 0743-7463 ER - TY - JOUR A1 - Garnier, Sebastien A1 - Laschewsky, André T1 - Synthesis of new amphiphilic diblock copolymers and their self-assembly in aqueous solution N2 - Amphiphilic diblock copolymers composed of poly(butyl acrylate) as the hydrophobic block with a low glass transition temperature and of six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) are prepared via reversible addition fragmentation chain transfer (RAFT) polymerization. The nonionic hydrophilic blocks comprise in addition to the classical poly(dimethylacrylamide), the thermally sensitive poly(N- acryloylpyrrolidine), and a comb-type polymer made of a poly(ethylene glycol acrylate) macromonomer, as well as a new strongly hydrophilic sulfoxide polymer. The "living" character of the polymerizations is supported by very low polydispersity indexes and a good correlation between the molar masses obtained and the theoretically expected ones. Two distinct glass transition temperatures were found by differential scanning calorimetry for the block copolymers, suggesting the immiscibility of the blocks in bulk. The self-assembling properties of the amphiphilic diblock copolymers in aqueous and organic media were studied by nuclear magnetic resonance spectroscopy and dynamic light scattering, as a function of the polarity of the hydrophilic blocks, the ratio of the lengths of the two blocks, and the overall molar mass of the diblock copolymers. Micellelike aggregates with diameters from 25 to 100 mn in water are found, as well as inverse micelles in organic solvents. The length of the hydrophobic block seems to be the main factor governing the size of the aggregates in water. The aggregates are very stable upon dilution and temperature cycles. For large hydrophobic blocks, big structures are observed in addition to small micelles initially after the dispersion in water. As the big aggregates disappear slowly, the micellization process seems thermodynamically favored. If two populations of micelles made from different block copolymers are brought together, "mixed" micelles are formed. The implicit exchange of polymers proves the dynamic character of the micellar systems based on poly(butyl acrylate) as hydrophobic block Y1 - 2005 ER - TY - JOUR A1 - Garnier, Sebastien A1 - Laschewsky, André A1 - Storsberg, J T1 - Polymeric surfactants : novel agents with exceptional properties N2 - This article presents recent progress in the field of polymeric surfactants made of permanently amphiphilic block copolymers or of stimulus-sensitive ones. We highlight key points in the design of amphiphilic macromolecules, to yield polymer surfactants with tailor-made properties, as well as recently developed and still challenging application fields for this new class of surfactants. The efficiency boosting of amphiphilic block copolymers as co-surfactants in microemulsions is discussed, as are surface modification by polymer surfactants, and stabilization of dispersions. Moreover, the use of block copolymers in nanosciences is presented, for instance as a tool for nanomaterial fabrication, or for biomedical and cosmetic applications in bio-nanotechnology. Finally, self-assembly and applications of some newly developed "exotic" amphiphilic block copolymer structures as new surface-active materials will be highlighted Y1 - 2006 UR - http://www.tsdjournal.com/ SN - 0932-3414 ER - TY - JOUR A1 - Mertoglu, Murat A1 - Garnier, Sebastien A1 - Laschewsky, André A1 - Skrabania, Katja A1 - Storsberg, J. T1 - Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT) N2 - A series of RAFT agents was synthesised, and used to prepare various ionic. non-ionic and zwitterionic water- soluble polymers, in organic as well as in aqueous media. The RAFT process proved to be a powerful method to prepare functional polymers of complex structure. such as amphiphilic diblock and triblock copolymers. This includes polymers containing one or even two stimuli-sensitive hydrophilic blocks. Switching the hydrophilic character of a single or of several blocks by changing the PH, the temperature or the salt content demonstrated the variability of the molecular designs suited for stimuli-sensitive polymeric amphiphiles, and exemplified the concept of multiple-sensitive systems. (c) 2005 Published by Elsevier Ltd Y1 - 2005 SN - 0032-3861 ER - TY - THES A1 - Garnier, Sébastien T1 - Novel amphiphilic diblock copolymers by RAFT-polymerization, their self-organization and surfactant properties T1 - Neue Amphiphile Diblockcopolymere mittels RAFT-Polymerisation, ihre Aggregations- und Tensideigenschaften N2 - The Reversible Addition Fragmentation Chain Transfer (RAFT) process using the new RAFT agent benzyldithiophenyl acetate is shown to be a powerful polymerization tool to synthesize novel well-defined amphiphilic diblock copolymers composed of the constant hydrophobic block poly(butyl acrylate) and of 6 different hydrophilic blocks with various polarities, namely a series of non-ionic, non-ionic comb-like, anionic and cationic hydrophilic blocks. The controlled character of the polymerizations was supported by the linear increase of the molar masses with conversion, monomodal molar mass distributions with low polydispersities and high degrees of end-group functionalization. The new macro-surfactants form micelles in water, whose size and geometry strongly depend on their composition, according to dynamic and static light scattering measurements. The micellization is shown to be thermodynamically favored, due to the high incompatibility of the blocks as indicated by thermal analysis of the block copolymers in bulk. The thermodynamic state in solution is found to be in the strong or super strong segregation limit. Nevertheless, due to the low glass transition temperature of the core-forming block, unimer exchange occurs between the micelles. Despite the dynamic character of the polymeric micellar systems, the aggregation behavior is strongly dependent on the history of the sample, i.e., on the preparation conditions. The aqueous micelles exhibit high stability upon temperature cycles, except for an irreversibly precipitating block copolymer containing a hydrophilic block exhibiting a lower critical solution temperature (LCST). Their exceptional stability upon dilution indicates very low critical micelle concentrations (CMC) (below 4∙10-4 g∙L-1). All non-ionic copolymers with sufficiently long solvophobic blocks aggregated into direct micelles in DMSO, too. Additionally, a new low-toxic highly hydrophilic sulfoxide block enables the formation of inverse micelles in organic solvents. The high potential of the new polymeric surfactants for many applications is demonstrated, in comparison to reference surfactants. The diblock copolymers are weakly surface-active, as indicated by the graduate decrease of the surface tension of their aqueous solutions with increasing concentration. No CMC could be detected. Their surface properties at the air/water interface confer anti-foaming properties. The macro-surfactants synthesized are surface-active at the interface between two liquid phases, too, since they are able to stabilize emulsions. The polymeric micelles are shown to exhibit a high ability to solubilize hydrophobic substances in water. N2 - Amphiphile sind Moleküle, die aus einem hydrophilen und einem hydrophoben Molekülteil aufgebaut sind. Beispiele für Amphiphile sind Tenside, deren makromolekulares Pendant amphiphile Block-Copolymere sind, die häufig auch als Makro-Tenside bezeichnet sind. Ihre Lösungseigenschaften in einem selektiven Lösungsmittel, i.e., ein für einen Block gutes und für den anderen schlechtes Lösungsmittel, sind analog zu denen von Tensiden. Die Unverträglichkeit der Polymersegmente führt zu einer von hydrophoben Wechselwirkungen getriebenen Mikrophasenseparation, d.h. zur Selbstorganisation der amphiphilen Makromoleküle zu Mizellen unterschiedlichster Form, während die kovalente Bindung zwischen den Blöcken eine Makrophasenseparation verhindert. Aufgrund ihres besonderen strukturellen Aufbaus adsorbieren Makro-Tenside an Grenzflächen, was zahlreiche Anwendungen, z.B. zur (elektro)sterischen Stabilisierung von Emulsionen und Dispersionen findet. Die vorliegende Arbeit demonstriert, dass die neuen kontrollierten radikalischen Polymerisationen wie die RAFT-Methode („Reversible Addition Fragmentation Chain Transfer“) für die Synthese von neuen wohldefinierten amphiphilen Diblock-Copolymerstrukturen sehr gut geeignet sind. Eine Reihe von neuen amphiphilen Diblock-Copolymeren wurde mittels RAFT synthetisiert, mit einem konstanten hydrophoben Block und verschiedenen hydrophilen Blöcken unterschiedlichster Polaritäten. Die engen Molmassenverteilungen und der lineare Aufstieg der Molmassen mit dem Umsatz belegen den kontrollierten Charakter der Polymerisation. Die thermodynamisch favorisierte Selbstorganisation der synthetisierten Blockcopolymere in Wasser führt zur Bildung von Mizellen, deren Eigenschaften aber von der Präparationsmethode stark abhängig sind. Korrelationen zwischen den Mizelleigenschaften und der Blockcopolymerstruktur zeigen, dass die Mizellgröße vor allem von der Länge des hydrophoben Blocks kontrolliert wird, wohindagegen die Natur des hydrophilen Blocks der entscheidende Faktor für die Mizellgeometrie ist. Die gebildeten Mizellen sind besonders stabil gegenüber Verdünnung und Temperaturzyklen, was ein großer Vorteil für eventuelle Anwendungen ist. Wegen der niedrigen Glasübergangstemperatur des hydrophoben Blocks findet ein Austausch von Makromolekülen zwischen den Mizellen statt, d.h. es handelt sich um dynamische Mizellsysteme. Das Potential der neuen Makrotenside für Anwendungen wurde untersucht. Die Polymermizellen zeigen eine hohe Kapazität wasserunlösliche Substanzen in Wasser zu solubilisieren. Die Blockcopolymere sind grenzflächenaktiv, d.h. sie adsorbieren an Wasser / Luft oder Wasser / Öl Grenzflächen. Entsprechend sind die Blockcopolymere in der Lage, Emulsionen zu stabilisieren oder als Antischaumsubstanzen zu wirken. KW - Blockcopolymere KW - Amphiphile KW - Polymertenside KW - RAFT-Polymerisation KW - Grenzflächenaktivität KW - Amphiphilic diblock copolymers KW - RAFT-Polymerization KW - Surfactants Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6395 ER - TY - JOUR A1 - Ortmann, Thomas A1 - Ahrens, Heiko A1 - Milewski, Sven A1 - Lawrenz, Frank A1 - Groening, Andreas A1 - Laschewsky, André A1 - Garnier, Sebastien A1 - Helm, Christiane A. T1 - Lipid monolayers with adsorbed oppositely charged polyelectrolytes: Influence of reduced charge densities JF - Polymers N2 - Polyelectrolytes in dilute solutions (0.01 mmol/L) adsorb in a two-dimensional lamellar phase to oppositely charged lipid monolayers at the air/water interface. The interchain separation is monitored by Grazing Incidence X-ray Diffraction. On monolayer compression, the interchain separation decreases to a factor of two. To investigate the influence of the electrostatic interaction, either the line charge density of the polymer is reduced (a statistic copolymer with 90% and 50% charged monomers) or mixtures between charged and uncharged lipids are used (dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB)) On decrease of the surface charge density, the interchain separation increases, while on decrease of the linear charge density, the interchain separation decreases. The ratio between charged monomers and charged lipid molecules is fairly constant; it decreases up to 30% when the lipids are in the fluid phase. With decreasing surface charge or linear charge density, the correlation length of the lamellar order decreases. KW - lipid monolayer KW - polyelectrolyte adsorption KW - statistical copolymer KW - two-dimensional phases KW - surface charge KW - nematic phase KW - grazing incidence X-ray diffraction Y1 - 2014 U6 - https://doi.org/10.3390/polym6071999 SN - 2073-4360 VL - 6 IS - 7 SP - 1999 EP - 2017 PB - MDPI CY - Basel ER -