TY - JOUR A1 - Fortesa, Josep A1 - García-Comendador, Julian A1 - Calsamiglia, A. A1 - López-Tarazón, José Andrés A1 - Latron, J. A1 - Alorda, B. A1 - Estrany, Joan T1 - Comparison of stage/discharge rating curves derived from different recording systems BT - Consequences for streamflow data and water management in a Mediterranean island JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Obtaining representative hydrometric values is essential for characterizing extreme events, hydrological dynamics and detecting possible changes on the long-term hydrology. Reliability of streamflow data requires a temporal continuity and a maintenance of the gauging stations, which data are affected by epistemic and random sources of error. An assessment of discharge meterings' and stage-discharge rating curves' uncertainties were carried out by comparing the accuracy of the measuring instruments of two different hydrometric networks (i.e., one analogical and one digital) established in the same river location at the Mediterranean island of Mallorca. Furthermore, the effects of such uncertainties were assessed on the hydrological dynamics, considering the significant global change impacts beset this island. Evaluation was developed at four representative gauging stations of the hydrographic network with analogic (≈40 years) and digital (≈10 years) data series. The study revealed that the largest source of uncertainty in the analogical (28 to 274%) and in the digital (17–37%) networks were the stage-discharge rating curves. Their impact on the water resources was also evaluated at the event and annual scales, resulting in an average difference of water yields of 183% and 142% respectively. Such improvement on the comprehension of hydrometric networks uncertainties will dramatically benefit the interpretation of the long-term streamflow by providing better insights into the hydrologic and flood hazard planning, management and modelling. KW - Hydrometric networks KW - Stage-discharge KW - Metering KW - Uncertainty KW - Error propagation Y1 - 2019 U6 - https://doi.org/10.1016/j.scitotenv.2019.02.158 SN - 0048-9697 SN - 1879-1026 VL - 665 SP - 968 EP - 981 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Estrany, Joan A1 - Ruiz, Maurici A1 - Calsamiglia, Aleix A1 - Carriqui, Marc A1 - Garcia-Comendador, Julian A1 - Nadal, Miquel A1 - Fortesa, Josep A1 - López-Tarazón, José Andrés A1 - Medrano, Hipolito A1 - Gago, Jorge T1 - Sediment connectivity linked to vegetation using UAVs BT - High-resolution imagery for ecosystem management JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - In this study, a low-cost unmanned aerial vehicle was used to obtain multi-spectral high-resolution imagery (1.4 cmpx(-1)) from2 microcatchments (3.3 ha) with burned Mediterranean shrubland and pine forests. This imagery was used to calculate the blue normalized differential vegetation index and to generate digital elevation models for estimating the sediment connectivity index. Both indices enabled an integrated approach for deciphering how hydrological and sediment connectivity interact with vegetation as well as soil conservation structures. The application of spatial analysis improves our understanding of the feedback between biological and geomorphological processes. Local spatial data analysis established a significant link between local geomorphological and biological factors, enabling a precise identification of homogeneous areas at micro-catchment scale and the minimal size of vegetation units reacting to geomorphology as natural groups at plot-scale where management strategies and efforts should be applied. Establishing this local relationship between sediment connectivity and vegetation patterns through new and interdisciplinary methodologies represents a new strategy for the assessment of ecosystem dynamics and management. KW - Ecogeomorphology KW - Mediterranean shrubland KW - Burned areas KW - UAVs KW - BNDVI KW - Sediment connectivity Y1 - 2019 U6 - https://doi.org/10.1016/j.scitotenv.2019.03.399 SN - 0048-9697 SN - 1879-1026 VL - 671 SP - 1192 EP - 1205 PB - Elsevier CY - Amsterdam ER -