TY - JOUR A1 - Sato, A A1 - Gambale, Franco A1 - Dreyer, Ingo A1 - Uozumi, N T1 - Posttranslational inodification affects K+ current of plant K+ channel Y1 - 2006 ER - TY - JOUR A1 - Voelker, Camilla A1 - Gomez-Porras, Judith Lucia A1 - Becker, Dirk A1 - Hamamoto, Shin A1 - Uozumi, Nobuyuki A1 - Gambale, Franco A1 - Müller-Röber, Bernd A1 - Czempinski, Katrin A1 - Dreyer, Ingo T1 - Roles of tandem-pore K plus channels in plants : a puzzle still to be solved N2 - The group of voltage-independent K+ channels in Arabidopsis thaliana consists of six members, five tandem-pore channels (TPK1-TPK5) and a single K-ir-like channel (KCO3). All TPK/KCO channels are located at the vacuolar membrane except for TPK4, which was shown to be a plasma membrane channel in pollen. The vacuolar channels interact with 14-3-3 proteins (also called General Regulating Factors, GRFs), indicating regulation at the level of protein-protein interactions. Here we review current knowledge about these ion channels and their genes, and highlight open questions that need to be urgently addressed in future studies to fully appreciate the physiological functions of these ion channels. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=1435-8603 U6 - https://doi.org/10.1111/j.1438-8677.2010.00353.x SN - 1435-8603 ER - TY - JOUR A1 - Naso, Alessia A1 - Dreyer, Ingo A1 - Pedemonte, Laura A1 - Testa, Ilaria A1 - Gomez-Porras, Judith Lucia A1 - Usai, Cesare A1 - Müller-Röber, Bernd A1 - Diaspro, Alberto A1 - Gambale, Franco A1 - Picco, Cristiana T1 - The role of the C-terminus for functional heteromerization of the plant channel KDC1 N2 - Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K+ channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha- subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two- hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C- terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K-HA domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal KHA domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/00063495 U6 - https://doi.org/10.1016/j.bpj.2009.02.055 SN - 0006-3495 ER -