TY - JOUR A1 - Scherbaum, Frank A1 - Weber, Michael H. A1 - Borm, G. T1 - The deep seismological lab in the KTB borehole: Status 1999 Y1 - 2000 ER - TY - JOUR A1 - Hinzen, K. G. A1 - Weber, B. A1 - Scherbaum, Frank T1 - On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany N2 - In recent years, H/V measurements have been increasingly used to map the thickness of sediment fill in sedimentary basins in the context of seismic hazard assessment. This parameter is believed to be an important proxy for the site effects in sedimentary basins (e.g. in the Los Angeles basin). Here we present the results of a test using this approach across an active normal fault in a structurally well known situation. Measurements on a 50 km long profile with 1 km station spacing clearly show a change in the frequency of the fundamental peak of H/V ratios with increasing thickness of the sediment layer in the eastern part of the Lower Rhine Embayment. Subsequently, a section of 10 km length across the Erft-Sprung system, a normal fault with ca. 750 m vertical offset, was measured with a station distance of 100 m. Frequencies of the first and second peaks and the first trough in the H/V spectra are used in a simple resonance model to estimate depths of the bedrock. While the frequency of the first peak shows a large scatter for sediment depths larger than ca. 500 m, the frequency of the first trough follows the changing thickness of the sediments across the fault. The lateral resolution is in the range of the station distance of 100 m. A power law for the depth dependence of the S-wave velocity derived from down hole measurements in an earlier study [Budny, 1984] and power laws inverted from dispersion analysis of micro array measurements [Scherbaum et al., 2002] agree with the results from the H/V ratios of this study Y1 - 2004 SN - 1363-2469 ER - TY - JOUR A1 - Malischewsky, Peter G. A1 - Scherbaum, Frank T1 - Love's formula and H/V-ratio (ellipticity) of Rayleigh waves N2 - The ellipticity of Rayleigh surface waves, which is an important parameter characterizing the propagation medium, is studied for several models with increasing complexity. While the main focus lies on theory, practical implications of the use of the horizontal to vertical component ratio (H/V-ratio) to Study the subsurface structure are considered as well. Love's approximation of the ellipticity for an incompressible layer over an incompressible half-space is critically discussed especially concerning its applicability for different impedance contrasts. The main result is an analytically exact formula of H/V for a 2-layer model of compressible media, which is a generalization of Love's formula. It turns out that for a limited range of models Love's approximation can be used also in the general case. (C) 2003 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0165-2125 ER - TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Al-Amoush, H. A1 - Babeyko, Andrey A1 - Bartov, Yosef A1 - Baumann, M. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bribach, Jens A1 - El-Kelani, R. A1 - Forster, A. A1 - Förster, Hans-Jürgen A1 - Frieslander, U. A1 - Garfunkel, Zvi A1 - Grunewald, Steffen A1 - Gotze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, S. A1 - Hofstetter, Alfons A1 - Jackel, K. H. A1 - Kesten, Dagmar A1 - Kind, Rainer A1 - Maercklin, Nils A1 - Mechie, James A1 - Mohsen, Amjad A1 - Neubauer, F. M. A1 - Oberhänsli, Roland A1 - Qabbani, I. A1 - Ritter, O. A1 - Rumpker, G. A1 - Rybakov, M. A1 - Ryberg, Trond A1 - Scherbaum, Frank A1 - Schmidt, J. A1 - Schulze, A. A1 - Sobolev, Stephan Vladimir A1 - Stiller, M. A1 - Th, T1 - The crustal structure of the Dead Sea Transform N2 - To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries Y1 - 2004 ER - TY - JOUR A1 - Schmedes, J. A1 - Hainzl, Sebastian A1 - Reamer, S. K. A1 - Scherbaum, Frank A1 - Hinzen, K. G. T1 - Moment release in the Lower Rhine Embayment, Germany : seismological perspective of the deformation process N2 - An important task of seismic hazard assessment consists of estimating the rate of seismic moment release which is correlated to the rate of tectonic deformation and the seismic coupling. However, the estimations of deformation depend on the type of information utilized (e.g. geodetic, geological, seismic) and include large uncertainties. We therefore estimate the deformation rate in the Lower Rhine Embayment (LRE), Germany, using an integrated approach where the uncertainties have been systematically incorporated. On the basis of a new homogeneous earthquake catalogue we initially determine the frequency-magnitude distribution by statistical methods. In particular, we focus on an adequate estimation of the upper bound of the Gutenberg-Richter relation and demonstrate the importance of additional palaeoseis- mological information. The integration of seismological and geological information yields a probability distribution of the upper bound magnitude. Using this distribution together with the distribution of Gutenberg-Richter a and b values, we perform Monte Carlo simulations to derive the seismic moment release as a function of the observation time. The seismic moment release estimated from synthetic earthquake catalogues with short catalogue length is found to systematically underestimate the long-term moment rate which can be analytically determined. The moment release recorded in the LRE over the last 250 yr is found to be in good agreement with the probability distribution resulting from the Monte Carlo simulations. Furthermore, the long-term distribution is within its uncertainties consistent with the moment rate derived by geological measurements, indicating an almost complete seismic coupling in this region. By means of Kostrov's formula, we additionally calculate the full deformation rate tensor using the distribution of known focal mechanisms in LRE. Finally, we use the same approach to calculate the seismic moment and the deformation rate for two subsets of the catalogue corresponding to the east- and west-dipping faults, respectively Y1 - 2005 SN - 0956-540X ER - TY - JOUR A1 - Musson, R. M. W. A1 - Toro, G. R. A1 - Coppersmith, Kevin J. A1 - Bommer, Julian J. A1 - Deichmann, N. A1 - Bungum, Hilmar A1 - Cotton, Fabrice A1 - Scherbaum, Frank A1 - Slejko, Dario A1 - Abrahamson, Norman A. T1 - Evaluating hazard results for Switzerland and how not to do it : a discussion of "Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants" by J-U Klugel N2 - The PEGASOS project was a major international seismic hazard study, one of the largest ever conducted anywhere in the world, to assess seismic hazard at four nuclear power plant sites in Switzerland. Before the report of this project has become publicly available, a paper attacking both methodology and results has appeared. Since the general scientific readership may have difficulty in assessing this attack in the absence of the report being attacked, we supply a response in the present paper. The bulk of the attack, besides some misconceived arguments about the role of uncertainties in seismic hazard analysis, is carried by some exercises that purport to be validation exercises. In practice, they are no such thing; they are merely independent sets of hazard calculations based on varying assumptions and procedures, often rather questionable, which come up with various different answers which have no particular significance. (C) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Tran Thanh Tuan, A1 - Scherbaum, Frank A1 - Malischewsky, Peter G. T1 - On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models JF - Geophysical journal international N2 - One of the key challenges in the context of local site effect studies is the determination of frequencies where the shakeability of the ground is enhanced. In this context, the H/V technique has become increasingly popular and peak frequencies of H/V spectral ratio are sometimes interpreted as resonance frequencies of the transmission response. In the present study, assuming that Rayleigh surface wave is dominant in H/V spectral ratio, we analyse theoretically under which conditions this may be justified and when not. We focus on 'layer over half-space' models which, although seemingly simple, capture many aspects of local site effects in real sedimentary structures. Our starting point is the ellipticity of Rayleigh waves. We use the exact formula of the H/V-ratio presented by Malischewsky & Scherbaum (2004) to investigate the main characteristics of peak and trough frequencies. We present a simple formula illustrating if and where H/V-ratio curves have sharp peaks in dependence of model parameters. In addition, we have constructed a map, which demonstrates the relation between the H/V-peak frequency and the peak frequency of the transmission response in the domain of the layer's Poisson ratio and the impedance contrast. Finally, we have derived maps showing the relationship between the H/V-peak and trough frequency and key parameters of the model such as impedance contrast. These maps are seen as diagnostic tools, which can help to guide the interpretation of H/V spectral ratio diagrams in the context of site effect studies. KW - Site effects KW - Theoretical seismology KW - Wave propagation Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04863.x SN - 0956-540X VL - 184 IS - 2 SP - 793 EP - 800 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Hinzen, Klaus-G A1 - Reamer, Sharon K. A1 - Scherbaum, Frank T1 - Slow fourier transform JF - Seismological research letters Y1 - 2013 U6 - https://doi.org/10.1785/0220120139 SN - 0895-0695 VL - 84 IS - 2 SP - 251 EP - 257 PB - Seismological Society of America CY - Albany ER -