TY - JOUR A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Ghindilis, A. L. A1 - Bier, Frank Fabian A1 - Ehrentreich-Förster, Eva A1 - Wollenberger, Ursula A1 - Bauer, Christian G. A1 - Micheel, Burkhard A1 - Pfeiffer, Dorothea A1 - Szeponik, Jan A1 - Michael, N. A1 - Kaden, H. T1 - Enzyme sensors for subnanomolar concentrations Y1 - 1995 ER - TY - JOUR A1 - Kaisheva, A. A1 - Iliev, I. A1 - Kazareva, R. A1 - Christov, S. A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Enzyme/gas diffusion electrodes for determination of phenol Y1 - 1996 ER - TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. T1 - Enzymes and antibodies in organic media : analytical applications Y1 - 1997 ER - TY - GEN A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Neumann, Bettina A1 - Zhang, Xiaorong A1 - Wollenberger, Ulla A1 - Cordin, Aude A1 - Haupt, Karsten A1 - Scheller, Frieder W. T1 - Enzymes as tools in MIP-sensors T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1098 KW - enzymatic MIP synthesis KW - template digestion KW - enzyme tracer KW - enzymatic analyte conversion KW - molecularly imprinted polymers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474642 SN - 1866-8372 IS - 1098 ER - TY - JOUR A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Neumann, Bettina A1 - Zhang, Xiaorong A1 - Wollenberger, Ulla A1 - Cordin, Aude A1 - Haupt, Karsten A1 - Scheller, Frieder W. T1 - Enzymes as Tools in MIP-Sensors JF - Chemosensors N2 - Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences. KW - enzymatic MIP synthesis KW - template digestion KW - enzyme tracer KW - enzymatic analyte conversion KW - molecularly imprinted polymers Y1 - 2017 U6 - https://doi.org/10.3390/chemosensors5020011 SN - 2227-9040 VL - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Kirstein, Dieter A1 - Schubert, Florian A1 - Pfeiffer, Dorothea A1 - McNeil, C. J. T1 - Enzymes in electrochemical biosensors Y1 - 1993 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Bier, Frank Fabian A1 - Wollenberger, Ursula A1 - Ghindilis, A. L. A1 - Eremenko, A. V. A1 - Pfeiffer, Dorothea T1 - Enzymsensoren zur Bestimmung subnanomolarer Konzentrationen Y1 - 1995 ER - TY - JOUR A1 - Halamek, Jan A1 - Teller, Carsten A1 - Makower, Alexander A1 - Fournier, Didier A1 - Scheller, Frieder W. T1 - EQCN-based cholinesterase biosensors N2 - The binding of acetylcholinesterase (AChE) to a propidium-modified piezoelectric quartz crystal and its surface enzymatic activity have been investigated. Propidium binds to a site remote to the active center of AChE - the peripheral anionic site (PAS) - which is located on the rim of the gorge to the active site. The gold electrodes of the quartz crystal were first modified with 11-mercaptoundecanoic acid to which propidium was coupled. AChE binding was monitored by a quartz crystal nanobalance (QCN), followed by amperometric activity evaluation of the AChE loaded on the sensor. Interestingly, the binding is strong but does not inhibit AChE. However, an excess of propidium in solution inhibits the immobilized enzyme. The surface enzymatic activities observed depend on the amount of enzyme and differ according to the type and species, i.e. number of enzyme subunits (Electrophorus electricus tetrameric, Drosophila melanogaster mono- and dimeric form - DmAChE). The operational stability and regeneration, effect of propidium in solution and detection limit for substrate for various AChEs were investigated amperometrically. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/00134686 U6 - https://doi.org/10.1016/j.electacta.2006.03.047 SN - 0013-4686 ER - TY - JOUR A1 - Liu, Songqin A1 - Wollenberger, Ursula A1 - Katterle, Martin A1 - Scheller, Frieder W. T1 - Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin N2 - An amperometric biosensor for the determination of glycated hemoglobin in human whole blood is proposed. The principle is based on the electrochemical measurement of ferroceneboronic acid (FcBA) that has been specifically bound to the glycated N-terminus. Hemoglobin is immobilized on a zirconium dioxide nanoparticle modified pyrolytic graphite electrode (PGE) in the presence of didodecyldimethylammonium bromide (DDAB). The incubation of this sensor in FcBA solution leads to the formation of an FcBA-modified surface due to the affinity interaction between boronate and the glycated sites of the hemoglobin. The binding of FcBA results in well-defined redox peaks with an E-0' of 0.299 V versus Ag/AgCl (1 M KCl). The square wave voltammetric response of the bound FcBA reflects the amount of glycated hemoglobin at the surface. This signal increases linearily with the degree of glycated hemoglobin from 6.8 to 14.0% of total immobilized hemoglobin. The scheme was applied to the determination of the fraction of glycated hemoglobin in whole blood samples. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/09254005 U6 - https://doi.org/10.1016/j.snb.2005.07.011 SN - 0925-4005 ER - TY - JOUR A1 - Kleinjung, Frank A1 - Beier, Frank F. A1 - Warsinke, Axel A1 - Scheller, Frieder W. T1 - Fibre-optic genosensor for specific determination of femtomolar DNA oligomers Y1 - 1997 ER - TY - JOUR A1 - Baeumner, Antje J. A1 - Gauglitz, Guenter A1 - Scheller, Frieder W. T1 - Focus on bioanalysis N2 - Editoria Y1 - 2010 UR - http://www.springerlink.com/content/100417 U6 - https://doi.org/10.1007/s00216-010-4203-9 SN - 1618-2642 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Wagener, C. T1 - From gene to life Y1 - 2004 ER - TY - JOUR A1 - Tadjoung Waffo, Armel Franklin A1 - Yesildag, Cigdem A1 - Caserta, Giorgio A1 - Katz, Sagie A1 - Zebger, Ingo A1 - Lensen, Marga C. A1 - Wollenberger, Ulla A1 - Scheller, Frieder W. A1 - Altintas, Zeynep T1 - Fully electrochemical MIP sensor for artemisinin JF - Sensors and actuators : B, Chemical N2 - This study aims to develop a rapid, sensitive and cost-effective biomimetic electrochemical sensor for artemisinin determination in plant extracts and for pharmacokinetic studies. A novel molecularly imprinted polymer (MIP)based electrochemical sensor was developed by electropolymerization of o-phenylenediamine (o-PD) in the presence of artemisinin on gold wire surface for sensitive detection of artemisinin. The experimental parameters, including selection of functional monomer, polymerization conditions, template extraction after polymerization, influence of pH and buffer were all optimized. Every step of imprinted film synthesis were evaluated by employing voltammetry techniques, surface-enhanced infrared absorption spectroscopy (SEIRAS) and atomic force microscopy (AFM). The specificity was further evaluated by investigating non-specific artemisinin binding on non-imprinted polymer (NIP) surfaces and an imprinting factor of 6.8 was achieved. The artemisinin imprinted polymers using o-PD as functional monomer have provided highly stable and effective binding cavities for artemisinin. Cross-reactivity studies with drug molecules showed that the MIPs are highly specific for artemisinin. The influence of matrix effect was further investigated both in artificial plant matrix and diluted human serum. The results revealed a high affinity of artemisinin-MIP with dissociation constant of 7.3 x 10(-9) M and with a detection limit of 0.01 mu M and 0.02 mu M in buffer and plant matrix, respectively. KW - Electro-synthesized molecularly imprinted polymer KW - o-Phenylenediamine KW - Artemisinin KW - Antimalarial drug detection KW - Electrochemical sensor Y1 - 2018 U6 - https://doi.org/10.1016/j.snb.2018.08.018 SN - 0925-4005 VL - 275 SP - 163 EP - 173 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Jin, Wen A1 - Bernhardt, Rita A1 - Lehmann, Claudia A1 - Stöcklein, Walter F. M. A1 - Brigelius-Flohé, Regina A1 - Scheller, Frieder W. T1 - Funktionalisierung von Elektroden für den direkten heterogenen Elektrotransfer Y1 - 1998 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Yarman, Aysu A1 - Bachmann, Till A1 - Hirsch, Thomas A1 - Kubick, Stefan A1 - Renneberg, Reinhard A1 - Schumacher, Soeren A1 - Wollenberger, Ursula A1 - Teller, Carsten A1 - Bier, Frank Fabian ED - Gu, MB ED - Kim, HS T1 - Future of biosensors: a personal view JF - Advances in biochemical engineering, biotechnology JF - Advances in Biochemical Engineering-Biotechnology N2 - Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar' personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables' such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous' biosensors will emerge. KW - Biosensors KW - Molecularly imprinted polymers KW - Personalized medicine Y1 - 2014 SN - 978-3-642-54143-8; 978-3-642-54142-1 U6 - https://doi.org/10.1007/10_2013_251 SN - 0724-6145 VL - 140 SP - 1 EP - 28 PB - Springer CY - Berlin ER - TY - JOUR A1 - Bier, Frank Fabian A1 - Ehrentreich-Förster, Eva A1 - Bauer, Christian G. A1 - Scheller, Frieder W. T1 - High sensitive competitive immunodetection of 2,4-dichlorophenoxyacetic acid using enzymatic amplification with electrochemical detection Y1 - 1996 ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - How reliable is the electrochemical readout of MIP sensors? JF - Sensors N2 - Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration. KW - molecularly imprinted polymers KW - electropolymerization KW - direct electron KW - transfer KW - catalysis KW - redox marker KW - gate effect Y1 - 2020 U6 - https://doi.org/10.3390/s20092677 SN - 1424-8220 VL - 20 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - How reliable is the electrochemical readout of MIP-sensors? T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 960 KW - molecularly imprinted polymers KW - electropolymerization KW - direct electron transfer KW - catalysis KW - redox marker KW - gate effect Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471608 SN - 1866-8372 IS - 960 ER - TY - JOUR A1 - Xie, B. A1 - Tang, X. A1 - Wollenberger, Ursula A1 - Johansson, G. A1 - Gorton, Lo A1 - Scheller, Frieder W. A1 - Danielsson, B. T1 - Hybrid biosensor for simultaneous electrochemical and thermal detection Y1 - 1997 ER - TY - JOUR A1 - Lettau, Kristian A1 - Gajovic-Eichelmann, N. A1 - Kwak, Young-Keun A1 - Scheller, Frieder W. A1 - Warsinke, Axel T1 - Hydroxylasen und katalytische Polymere für Biochips Y1 - 2004 ER - TY - JOUR A1 - Beissenhirtz, Moritz Karl A1 - Scheller, Frieder W. A1 - Lisdat, Fred T1 - Immobilized cytochrome c sensor in organic / aqueous media for the characterization of hydrophilic and hydrophobic antioxidants Y1 - 2003 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Bauer, Christian G. A1 - Makower, Alexander A1 - Wollenberger, Ursula A1 - Warsinke, Axel A1 - Bier, Frank Fabian T1 - Immunoassays using enzymatic amplification electrodes Y1 - 2002 SN - 0-7484-0791-X ER - TY - JOUR A1 - Buttermeyer, R. A1 - Philipp, A. W. A1 - Mall, J. W. A1 - Ge, Bixia A1 - Scheller, Frieder W. A1 - Lisdat, Fred T1 - In vivo measurement of oxygen derived free radicals during reperfusion injury Y1 - 2002 ER - TY - JOUR A1 - Loew, Noya A1 - Bogdanoff, Peter A1 - Herrmann, Iris A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. A1 - Katterle, Martin T1 - Influence of modifications on the efficiency of pyrolysed CoTMPP as electrode material for horseradish peroxidase and the reduction of hydrogen peroxide JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A tailor-made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a k(S) (401 +/- 61 s(-1)) exceeding previously reported values for native HRP was found. KW - cobalt porphyrin KW - electron transfer KW - horseradish peroxidase KW - hydrogen peroxide KW - immobilization Y1 - 2006 U6 - https://doi.org/10.1002/elan.200603664 SN - 1040-0397 VL - 18 IS - 23 SP - 2324 EP - 2330 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Caserta, Giorgio A1 - Zhang, Xiaorong A1 - Yarman, Aysu A1 - Supala, Eszter A1 - Wollenberger, Ulla A1 - Gyurcsányi, Róbert E. A1 - Zebger, Ingo A1 - Scheller, Frieder W. T1 - Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms JF - Electrochimica acta : the journal of the International Society of Electrochemistry (ISE) N2 - Molecularly imprinted polymer (MIP) nanofilms have been successfully implemented for the recognition of different target molecules: however, the underlying mechanistic details remained vague. This paper provides new insights in the preparation and binding mechanism of electrosynthesized peptide-imprinted polymer nanofilms for selective recognition of the terminal pentapeptides of the beta-chains of human adult hemoglobin, HbA, and its glycated form HbA1c. To differentiate between peptides differing solely in a glucose adduct MIP nanofilms were prepared by a two-step hierarchical electrosynthesis that involves first the chemisorption of a cysteinyl derivative of the pentapeptide followed by electropolymerization of scopoletin. This approach was compared with a random single-step electrosynthesis using scopo-letin/pentapeptide mixtures. Electrochemical monitoring of the peptide binding to the MIP nanofilms by means of redox probe gating revealed a superior affinity of the hierarchical approach with a Kd value of 64.6 nM towards the related target. Changes in the electrosynthesized non-imprinted polymer and MIP nanofilms during chemical, electrochemical template removal and rebinding were substantiated in situ by monitoring the characteristic bands of both target peptides and polymer with surface enhanced infrared absorption spectroscopy. This rational approach led to MIPs with excellent selectivity and provided key mechanistic insights with respect to electrosynthesis, rebinding and stability of the formed MIPs. KW - SEIRA spectroelectrochemistry KW - peptide imprinting KW - electrosynthesis KW - MIP KW - glycated peptide Y1 - 2021 U6 - https://doi.org/10.1016/j.electacta.2021.138236 SN - 0013-4686 SN - 1873-3859 VL - 381 PB - Elsevier CY - New York, NY [u.a.] ER - TY - JOUR A1 - Altintas, Zeynep A1 - Takiden, Aref A1 - Utesch, Tillmann A1 - Mroginski, Maria A. A1 - Schmid, Bianca A1 - Scheller, Frieder W. A1 - Süssmuth, Roderich D. T1 - Integrated approaches toward high-affinity artificial protein binders obtained via computationally simulated epitopes for protein recognition JF - Advanced functional materials N2 - Widely used diagnostic tools make use of antibodies recognizing targeted molecules, but additional techniques are required in order to alleviate the disadvantages of antibodies. Herein, molecular dynamic calculations are performed for the design of high affinity artificial protein binding surfaces for the recognition of neuron specific enolase (NSE), a known cancer biomarker. Computational simulations are employed to identify particularly stabile secondary structure elements. These epitopes are used for the subsequent molecular imprinting, where surface imprinting approach is applied. The molecular imprints generated with the calculated epitopes of greater stability (Cys-Ep1) show better binding properties than those of lower stability (Cys-Ep5). The average binding strength of imprints created with stabile epitopes is found to be around twofold and fourfold higher for the NSE derived peptide and NSE protein, respectively. The recognition of NSE is investigated in a wide concentration range, where high sensitivity (limit of detection (LOD) = 0.5 ng mL(-1)) and affinity (dissociation constant (K-d) = 5.3 x 10(-11)m) are achieved using Cys-Ep1 imprints reflecting the stable structure of the template molecules. This integrated approach employing stability calculations for the identification of stabile epitopes is expected to have a major impact on the future development of high affinity protein capturing binders. KW - artificial protein binders KW - cancer markers KW - computationally simulated epitopes KW - molecular imprinting KW - protein recognition Y1 - 2019 U6 - https://doi.org/10.1002/adfm.201807332 SN - 1616-301X SN - 1616-3028 VL - 29 IS - 15 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Label-free observation of DNA-hybridisation and endonuclease activity on a wave guide surface using a grating coupler Y1 - 1996 ER - TY - JOUR A1 - Ghindilis, A. L. A1 - Makower, Alexander A1 - Scheller, Frieder W. T1 - Laccase - glucose dehydrogenase recycling enzyme electrode based on potentiometric mediatorless electrocatalytic detection Y1 - 1995 ER - TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. T1 - Laccase : a marker enzyme for solvent modified immunoassays Y1 - 1996 ER - TY - JOUR A1 - Schulmeister, Thomas A1 - Rose, Jürgen A1 - Scheller, Frieder W. T1 - Mathematical modelling of exponential amplification in membrane-based enzyme sensors Y1 - 1997 ER - TY - JOUR A1 - Eremenko, A. V. A1 - Makower, Alexander A1 - Scheller, Frieder W. T1 - Measurement of nanomolar diphenols by substrate recycling coupled to a pH- sensitive electrode Y1 - 1995 ER - TY - JOUR A1 - Kulys, J. A1 - Drungiliene, A. A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Membrane covered carbon paste electrode for the electrochemical determination of perioxidase and microperoxidase in a flow system Y1 - 1998 ER - TY - JOUR A1 - Stöllner, Daniela A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. A1 - Warsinke, Axel T1 - Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c-immunosensor Y1 - 2002 ER - TY - JOUR A1 - Frasca, Stefano A1 - von Graberg, Till A1 - Feng, Jiu-Ju A1 - Thomas, Arne A1 - Smarsly, Bernd M. A1 - Weidinger, Inez M. A1 - Scheller, Frieder W. A1 - Hildebrandt, Peter A1 - Wollenberger, Ursula T1 - Mesoporous indium tin oxide as a novel platform for bioelectronics N2 - Stable immobilization and reversible electrochemistry of cytochrome c in a tranparent indium tin oxide film with a well-defined mesoporosity (mpITO) is demonstrated. the transparency and good conductivity, in combination with the large surface area of mpITO, allow the incorporation of a high amount of elelctroactive biomolecules and their electrochemical and spectroscopic investigation. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry are employed for the characterization of cytochrome c immobilized in the mpITO and reveal no perturbant of the structural of the integrity of the redox protein. The potential of this modified material as a biosensor detection of superoxide anions is also demonstrated. Y1 - 2010 UR - http://www3.interscience.wiley.com/journal/122208635/home U6 - https://doi.org/10.1002/cctc.201000047 SN - 1867-3880 ER - TY - JOUR A1 - Kleinjung, Frank A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Messungen an Nukleinsäuren mittels evaneszenten Feldes Y1 - 1995 ER - TY - JOUR A1 - Riedel, K. A1 - Beyersdorf-Radeck, Baerbel A1 - Neumann, B. A1 - Scheller, Frieder W. A1 - Schmid, Rolf D. T1 - Microbial sensors for determination of aromatics and their chloro derivatives. Part III: Determination of chlorinated phenols using a biosensor containing Trichosporon beigelii (cutaneum) Y1 - 1995 ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - MIP-esterase/Tyrosinase Combinations for Paracetamol and Phenacetin JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A new electrochemical MIP sensor for the most frequently used drug paracetamol (PAR) was prepared by electropolymerization of mixtures containing the template molecule and the functional monomers ophenylenediamine, resorcinol and aniline. The imprinting factor of 12 reflects the effective target binding to the MIP as compared with the non-imprinted electropolymer. Combination of the MIP with a nonspecific esterase allows the measurement of phenacetin - another analgesic drug. In the second approach the PAR containing sample solution was pretreated with tyrosinase in order to prevent electrochemical interferences by ascorbic acid and uric acid. Interference-free indication at a very low electrode potential without fouling of the electrode surface was achieved with the o-phenylenediamine: resorcinol-based MIP. KW - Paracetamol KW - Molecularly imprinted polymers KW - Electropolymerization KW - Tyrosinase KW - Esterase KW - Phenacetin Y1 - 2016 U6 - https://doi.org/10.1002/elan.201600042 SN - 1040-0397 SN - 1521-4109 VL - 28 SP - 2222 EP - 2227 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Menger, Marcus A1 - Yarman, Aysu A1 - Erdössy, Júlia A1 - Yildiz, Huseyin Bekir A1 - Gyurcsányi, Róbert E. A1 - Scheller, Frieder W. T1 - MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing JF - Biosensors : open access journal N2 - Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application. KW - biomimetic recognition elements KW - aptamers KW - molecularly imprinted polymers KW - chemical sensors KW - aptasensors KW - in vitro selection KW - SELEX Y1 - 2016 U6 - https://doi.org/10.3390/bios6030035 SN - 2079-6374 VL - 6 SP - 4399 EP - 4413 PB - MDPI CY - Basel ER - TY - GEN A1 - Menger, Marcus A1 - Yarman, Aysu A1 - Erdőssy, Júlia A1 - Yildiz, Huseyin Bekir A1 - Gyurcsányi, Róbert E. A1 - Scheller, Frieder W. T1 - MIPs and aptamers for recognition of proteins in biomimetic sensing N2 - Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 357 KW - biomimetic recognition elements KW - aptamers KW - molecularly imprinted polymers KW - chemical sensors KW - aptasensors KW - in vitro selection KW - SELEX Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400496 ER - TY - JOUR A1 - Lehmann, Claudia A1 - Wollenberger, Ursula A1 - Brigelius-Flohé, Regina A1 - Scheller, Frieder W. T1 - Modified gold electrodes for electrochemical studies of the reaction phospholipid hydroperoxide glutathione peroxidas with glutathione and glutathione disulfide Y1 - 2001 ER - TY - JOUR A1 - Bosserdt, Maria A1 - Gajovic-Eichelman, Nenad A1 - Scheller, Frieder W. T1 - Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film JF - Analytical & bioanalytical chemistry N2 - We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 % of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins. KW - Cytochrome c KW - Molecularly imprinted polymer film KW - Mercaptoundecanoic acid KW - Direct electron transfer KW - Scopoletin (7-hydroxy-6-methoxycoumarin) Y1 - 2013 U6 - https://doi.org/10.1007/s00216-013-7009-8 SN - 1618-2642 VL - 405 IS - 20 SP - 6437 EP - 6444 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Jetzschmann, Katharina J. A1 - Yarman, Aysu A1 - Rustam, L. A1 - Kielb, P. A1 - Urlacher, V. B. A1 - Fischer, A. A1 - Weidinger, I. M. A1 - Wollenberger, Ulla A1 - Scheller, Frieder W. T1 - Molecular LEGO by domain-imprinting of cytochrome P450 BM3 JF - Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces N2 - Hypothesis: Electrosynthesis of the MIP nano-film after binding of the separated domains or holocytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Experiments: Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). Findings: The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the hiss-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The hiss-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. KW - Molecularly imprinted polymers KW - Protein imprinting KW - Electropolymerization KW - Cytochrome P450 Y1 - 2018 U6 - https://doi.org/10.1016/j.colsurfb.2018.01.047 SN - 0927-7765 SN - 1873-4367 VL - 164 SP - 240 EP - 246 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Knösche, Kristina A1 - Halámek, Jan A1 - Makower, Alexander A1 - Fournier, Didier A1 - Scheller, Frieder W. T1 - Molecular recognition of cocaine by acetylcholinesterases for affinity purification and bio-sensing Y1 - 2003 ER - TY - GEN A1 - Peng, Lei A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Jeoung, Jae-Hun A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis N2 - For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of −184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 362 KW - molecularly imprinted polymers KW - self-assembled monolayer KW - direct electron transfer KW - hydrogen peroxide KW - bioelectrocatalysis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400627 ER - TY - JOUR A1 - Peng, Lei A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Jeoung, Jae-Hun A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis JF - SENSORS N2 - For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 +/- 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). KW - hydrogen peroxide KW - bioelectrocatalysis KW - molecularly imprinted polymers KW - direct electron transfer KW - self-assembled monolayer Y1 - 2016 U6 - https://doi.org/10.3390/s16030272 SN - 1424-8220 VL - 16 SP - 1343 EP - 1364 PB - MDPI CY - Basel ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Zhang, Xiaorong A1 - Yarman, Aysu A1 - Wollenberger, Ulla A1 - Gyurcsányi, Róbert E. T1 - Molecularly imprinted polymer-based electrochemical sensors for biopolymers JF - Current opinion in electrochemistry N2 - Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one ‘separation plate’; thus, the selectivity does not reach the values of ‘bulk’ measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an ‘overall apparent’ signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively. KW - Electropolymerization KW - Direct electron transfer KW - Redox marker KW - Epitope imprinting KW - Biomarker Y1 - 2018 U6 - https://doi.org/10.1016/j.coelec.2018.12.005 SN - 2451-9103 VL - 14 SP - 53 EP - 59 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Bier, Frank Fabian A1 - Yin, Wen A1 - Kleinjung, Frank A1 - Scheller, Frieder W. T1 - Molekulare Schichten zur Analyse biochemischer Bindungen und Umsatzreaktionen Y1 - 1995 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula A1 - Schubert, Florian A1 - Pfeiffer, Dorothea A1 - Markower, Alexander A1 - McNeil, C. J. T1 - Multienzyme biosensors : coupled enzyme reactions and enzyme activation Y1 - 1993 ER - TY - JOUR A1 - Kröning, Steffen A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula A1 - Lisdat, Fred T1 - Myoglobin-Clay Electrode for Nitric Oxide (NO) Detection in Solution Y1 - 2004 ER - TY - JOUR A1 - Schmidt, Peter Michael A1 - Matthes, E. A1 - Scheller, Frieder W. A1 - Bier, Frank Fabian T1 - Nachweis der Telomeraseaktivität in Zellkulturen mittels eines faseroptischen Sensors Y1 - 2001 ER -