TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Warsinke, Axel A1 - Micheel, Burkhard A1 - Höhne, Wolfgang A1 - Woller, Jochen A1 - Kempter, Gerhard A1 - Scheller, Frieder W. T1 - Characterization of a monoclonal antibody and its Fab fragment against diphenylurea hapten with BIA Y1 - 1998 SN - 3-8154-3540-4 ER - TY - JOUR A1 - Warsinke, Axel A1 - Stancik, L. A1 - Macholán, L. A1 - Pfeiffer, Dorothea A1 - Scheller, Frieder W. T1 - Biosensors for food analysis : application of biosensors to food requirements Y1 - 1998 SN - 0-85404-750-6 ER - TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Warsinke, Axel A1 - Micheel, Burkhard A1 - Höhne, Wolfgang A1 - Woller, Jochen A1 - Kempter, Gerhard A1 - Scheller, Frieder W. T1 - Detection of diphenylurea derivatives with biospecific interaction analysis (BIA) : Kinetic investigations Y1 - 1997 ER - TY - JOUR A1 - Spricigo, Roberto A1 - Dronov, Roman A1 - Lisdat, Fred A1 - Leimkühler, Silke A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula T1 - Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer N2 - An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V ( vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 mu M sulfite with a sensitivity of 2.19 mA M-1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8% and lost 20% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample. Y1 - 2009 UR - http://www.springerlink.com/content/100417 U6 - https://doi.org/10.1007/s00216-008-2432-y SN - 1618-2642 ER - TY - JOUR A1 - Ehrentreich-Förster, Eva A1 - Shishniashvili, D. A1 - Song, Min Ik A1 - Scheller, Frieder W. T1 - Study of antioxidative substances by means of a ssuperoxide sensor Y1 - 1998 ER - TY - JOUR A1 - Kulys, J. A1 - Drungiliene, A. A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Membrane covered carbon paste electrode for the electrochemical determination of perioxidase and microperoxidase in a flow system Y1 - 1998 ER - TY - JOUR A1 - Jin, Wen A1 - Bernhardt, Rita A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. T1 - Direct electron transfer of adrenodoxin-a [2Fe-2S] protein-- and its mutants on modified gold electrode Y1 - 1998 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Neumann, B. A1 - Scheller, Frieder W. T1 - Development of a biomimetic alkane sensor f Y1 - 1998 ER - TY - JOUR A1 - Scheller, Frieder W. T1 - Biosensorik Y1 - 1998 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Pfeiffer, Dorothea A1 - Lisdat, Fred A1 - Bauer, Christian G. A1 - Gajovic, Nenad T1 - Enzyme biosensors based on oxygen detection Y1 - 1998 ER - TY - JOUR A1 - Bogdanovskaya, V. A. A1 - Fridman, Vadim A1 - Tarasevich, M. R. A1 - Scheller, Frieder W. T1 - Bioelectrocatalysis by immobilized peroxidase : the reaction mechanism and the possibility of electroanalytical detection of both inhibitors and activators of enzyme Y1 - 1994 ER - TY - JOUR A1 - Kirstein, Dieter A1 - Kirstein, Lincoln A1 - Scheller, Frieder W. A1 - Dieckmann, St. A1 - Ronnenberg, J. A1 - Beckmann, Dieter A1 - Weckenbrock, E. T1 - Elektroenzymatische Reduktion von Nitrat Y1 - 1994 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Neumann, B. A1 - Riedel, K. A1 - Scheller, Frieder W. T1 - Enzyme and microbial sensors for phosphate, phenols, pesticides and peroxides Y1 - 1994 ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - Coupling biocatalysis with molecular imprinting in a biomimetic sensor JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition KW - biomimetic sensors KW - electropolymers KW - enzymes KW - hierarchical structures KW - molecularly imprinted polymers Y1 - 2013 U6 - https://doi.org/10.1002/anie.201305368 SN - 1433-7851 SN - 1521-3773 VL - 52 IS - 44 SP - 11521 EP - 11525 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Pfeiffer, Dorothea T1 - Commercial devices based on amperometric biosensors Y1 - 1997 ER - TY - JOUR A1 - Schulmeister, Thomas A1 - Rose, Jürgen A1 - Scheller, Frieder W. T1 - Mathematical modelling of exponential amplification in membrane-based enzyme sensors Y1 - 1997 ER - TY - JOUR A1 - Warsinke, Axel A1 - Benkert, Alexander A1 - Scheller, Frieder W. T1 - Biomolecular modules for creatinine determination Y1 - 1996 ER - TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. T1 - Laccase : a marker enzyme for solvent modified immunoassays Y1 - 1996 ER - TY - JOUR A1 - Halámek, Jan A1 - Wollenberger, Ursula A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. T1 - Development of a biosensor for glycated hemoglobin N2 - The development of an electrochemical piezoelectric sensor for the detection of glycated hemoglobin is presented. The total hemoglobin (Hb) content is monitored with a mass-sensitive quartz crystal modified with surfactants, and the glycated fraction of the immobilized Hb is determined by subsequent voltarnmetric measurement of the coupled ferroceneboronic acid. Different modifications of the sensor were tested for their hemoglobin binding ability. Deoxycholate (DOCA) was found to be the most suitable among the examined modifiers. Piezoelectric quartz crystals with gold electrodes were modified with DOCA by covalent binding to a pre-formatted 4-aminothiophenol monolayer. The properties of the Hb binding to DOCA and the pH effect on this interaction were studied. In the proposed assay for glycated hemoglobin at first an Hb sample is incubated with ferroceneboronic acid (FcBA), which binds to the fructosyl residue of the glycated Hb. Then this preincubated Hb sample is allowed to interact with the DOCA-modified piezoelectric quartz crystal. The binding is monitored by quartz crystal nanobalance QCN). The amount of FcBA present on the sensor surface is determined by square wave voltammetry. The binding of FcBA results in well-defined peaks with an EO' of +200 mV versus Ag/AgC1 (1 M KC1). The peak height depends on the degree of glycated Hb in the sample ranging from 0% to 20% of total Hb. The regeneration of the sensing surface is achieved by pepsin digestion of the deposited Hb. Thus the sensor can be re-used more than 30 times. Y1 - 2007 UR - http://www.sciencedirect.com/science/journal/00134686 U6 - https://doi.org/10.1016/j.electacta.2007.03.059 SN - 0013-4686 ER - TY - JOUR A1 - Halámek, Jan A1 - Wollenberger, Ursula A1 - Stöcklein, Walter F. M. A1 - Warsinke, Axel A1 - Scheller, Frieder W. T1 - Signal amplification in immunoassays using labeling via boronic acid binding to the sugar moiety of immunoglobulin G : proof of concept for glycated hemoglobin N2 - A novel electrochemical immunoassay based on the multiple affinity labeling of the indicator antibody with an electro-active tag is presented. The concept is illustrated for the determination of the glycated hemoglobin HbA1c in hemoglobin samples. Hemoglobin is adsorbed to the surfactant-modified surface of a piezoelectric quartz crystal. Whereas the quartz crystal nanobalance is used to validate the total Hb binding, the HbA1c on the sensor surface is recognized by an antibody and quantified electrochemically after the sugar moieties of the antibody have been labeled in-situ with ferroceneboronic acid. The sensitivity of this sensor is about threefold higher than the sensitivity of a hemoglobin sensor, where the ferroceneboronic acid is bound directly to HbA1c. Y1 - 2007 UR - http://www.informaworld.com/openurl?genre=journal&issn=0003-2719 U6 - https://doi.org/10.1080/00032710701327096 SN - 0003-2719 ER - TY - JOUR A1 - Scheller, Frieder W. T1 - Tribute to Guenter Gauglitz (Editorial) Y1 - 2009 UR - http://www.springerlink.com/content/100417 U6 - https://doi.org/10.1007/s00216-008-2548-0 SN - 1618-2642 ER - TY - JOUR A1 - Yarman, Aysu A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Sensors based on cytochrome P450 and CYP mimicking systems JF - ELECTROCHIMICA ACTA N2 - Cytochrome P450 enzymes (CYPs) act on more than 90 percent of all drugs currently on the market. The catalytic cycle requires electron supply to the heme iron in the presence of oxygen. Electrochemistry allows to characterise the reaction mechanism of these redox enzymes by observing the electron transfer in real time. According to the number of publications on protein electrochemistry CYP has the third position after glucose oxidase and cytochrome c. CYP based enzyme electrodes for the quantification of drugs, metabolites or pesticides have been developed using different iso-enzymes. A crucial step in the sensor development is the efficiency of coupling the biocatalytic systems with the electrode is. In the 1970s the direct electron transfer of heme and heme peptides called microperoxidases (MPs) was used as model of oxidoreductases. They exhibit a broad substrate spectrum including hydroxylation of selected aromatic substrates, demethylation and epoxidation by means of hydrogen peroxide. It overlaps with that of P450 making heme and MPs to alternate recognition elements in biosensors for the detection of typical CYP substrates. In these enzyme electrodes the signal is generated by the conversion of all substrates thus representing in complex media an overall parameter. By combining the biocatalytic substrate conversion with selective binding to a molecularly imprinted polymer layer the specificity has been improved. Here we discuss different approaches of biosensors based on CYP, microperoxidases and catalytically active MIPs and discuss their potential as recognition elements in biosensors. The performance of these sensors and their further development are discussed. (C) 2013 Elsevier Ltd. All rights reserved. KW - Cytochrome P450 KW - Microperoxidases KW - Catalytically active molecularly imprinted polymers KW - Biosensors KW - Personalised medicine Y1 - 2013 U6 - https://doi.org/10.1016/j.electacta.2013.03.154 SN - 0013-4686 SN - 1873-3859 VL - 110 SP - 63 EP - 72 PB - PERGAMON-ELSEVIER SCIENCE LTD CY - OXFORD ER - TY - JOUR A1 - Lehmann, Claudia A1 - Wollenberger, Ursula A1 - Brigelius-Flohé, Regina A1 - Scheller, Frieder W. T1 - Bioelectrocatalysis by a selenoenzyme Y1 - 1998 ER - TY - JOUR A1 - Kirstein, Dieter A1 - Kirstein, Lincoln A1 - Scheller, Frieder W. A1 - Borcherding, H. T1 - Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase Y1 - 1998 ER - TY - JOUR A1 - Scheller, Frieder W. T1 - Neue Dimensionen der Biosensorik Y1 - 1998 ER - TY - JOUR A1 - Jin, Wen A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - PQQ as redox shuttle for quinoprotein glucose dehydrogenase Y1 - 1998 ER - TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Warsinke, Axel A1 - Micheel, Burkhard A1 - Kempter, Gerhard A1 - Höhne, Wolfgang A1 - Scheller, Frieder W. T1 - Diphenylurea hapten sensing with a monoclonal antibody and its Fab fragment : kinetic and thermodynamic investigations Y1 - 1998 ER - TY - JOUR A1 - Eremenko, Arkadi V. A1 - Bauer, Christian G. A1 - Makower, Alexander A1 - Kanne, Beate A1 - Baumgarten, Horst A1 - Scheller, Frieder W. T1 - The development of a non-competitive immunoenzymometric Assay (IEMA) of cocaine Y1 - 1998 ER - TY - JOUR A1 - Streffer, Katrin A1 - Kaatz, Helvi A1 - Bauer, Christian G. A1 - Makower, Alexander A1 - Schulmeister, Thomas A1 - Scheller, Frieder W. A1 - Peter, Martin G. A1 - Wollenberger, Ursula T1 - Application of a sensitive catechol detector for determination of tyrosinase inhibitors Y1 - 1998 ER - TY - JOUR A1 - Huang, T. A1 - Warsinke, Axel A1 - Kuwana, T. A1 - Scheller, Frieder W. T1 - The determination of L-phenylalanine based on a novel NADH-detecting biosensor Y1 - 1998 ER - TY - JOUR A1 - Bauer, Christian G. A1 - Eremenko, A. V. A1 - Kühn, A. A1 - Kürzinger, K. A1 - Markower, Alexander A1 - Scheller, Frieder W. T1 - Automated amplifield flow immunoassay for cocaine Y1 - 1998 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Jin, Wen A1 - Bernhardt, Rita A1 - Lehmann, Claudia A1 - Stöcklein, Walter F. M. A1 - Brigelius-Flohé, Regina A1 - Scheller, Frieder W. T1 - Funktionalisierung von Elektroden für den direkten heterogenen Elektrotransfer Y1 - 1998 ER - TY - JOUR A1 - Gajovic, Nenad A1 - Warsinke, Axel A1 - Scheller, Frieder W. T1 - A bienzyme electrode for L-malate based on a novel and general design Y1 - 1998 ER - TY - JOUR A1 - Lisdat, Fred A1 - Ho, Wah O. A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. A1 - Richter, Torsten A1 - Bilitewski, Ursula T1 - Recycling systems based on screen-printed electrodes Y1 - 1998 ER - TY - JOUR A1 - Baeumner, Antje J. A1 - Gauglitz, Guenter A1 - Scheller, Frieder W. T1 - Focus on bioanalysis N2 - Editoria Y1 - 2010 UR - http://www.springerlink.com/content/100417 U6 - https://doi.org/10.1007/s00216-010-4203-9 SN - 1618-2642 ER - TY - JOUR A1 - Bosserdt, Maria A1 - Gajovic-Eichelman, Nenad A1 - Scheller, Frieder W. T1 - Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film JF - Analytical & bioanalytical chemistry N2 - We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 % of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins. KW - Cytochrome c KW - Molecularly imprinted polymer film KW - Mercaptoundecanoic acid KW - Direct electron transfer KW - Scopoletin (7-hydroxy-6-methoxycoumarin) Y1 - 2013 U6 - https://doi.org/10.1007/s00216-013-7009-8 SN - 1618-2642 VL - 405 IS - 20 SP - 6437 EP - 6444 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Scheller, Frieder W. T1 - New recognition elements for bioanalytics Y1 - 1996 ER - TY - JOUR A1 - Pfeiffer, Dorothea A1 - Schubert, Frank A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Electrochemical sensors : enzyme electrodes and field effect transistors Y1 - 1996 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Enzyme activation for activator and enzyme activity measurement Y1 - 1993 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Neumann, B. A1 - Scheller, Frieder W. T1 - Enzyme and microbial sensors for environmental Monitoring Y1 - 1993 ER - TY - JOUR A1 - Yarman, Aysu A1 - Schulz, Christopher A1 - Sygmund, Cristoph A1 - Ludwig, Roland A1 - Gorton, Lo A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Third generation ATP sensor with enzymatic analyte recycling JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - For the first time the direct electron transfer of an enzyme - cellobiose dehydrogenase, CDH - has been coupled with the hexokinase catalyzed competition for glucose in a sensor for ATP. To enhance the signal output for ATP, pyruvate kinase was coimmobilized to recycle ADP by the phosphoenolpyruvate driven reaction. The new sensor overcomes the limit of 1:1 stoichiometry of the sequential or competitive conversion of ATP by effective enzymatic recycling of the analyte. The anodic oxidation of the glucose converting CDH proceeds at electrode potentials below 0 mV vs. Ag vertical bar AgCl thus potentially interfering substances like ascorbic acid or catecholamines do not influence the measuring signal. The combination of direct electron transfer of CDH with the enzymatic recycling results in an interference-free and oxygen-independent measurement of ATP in the lower mu molar concentration range with a lower limit of detection of 63.3 nM (S/N=3). KW - ATP KW - Third generation sensor KW - Enzymatic recycling KW - Cellobiose dehydrogenase KW - Hexokinase KW - Pyruvate kinase Y1 - 2014 U6 - https://doi.org/10.1002/elan.201400231 SN - 1040-0397 SN - 1521-4109 VL - 26 IS - 9 SP - 2043 EP - 2048 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Spricigo, Roberto A1 - Leimkühler, Silke A1 - Gorton, Lo A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula T1 - The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - We report electron transfer between the catalytic molybdenum cofactor (Moco) domain of human sulfite oxidase (hSO) and electrodes through a poly(vinylpyridine)-bound [osmium(N,N'-methyl-2,2'-biimidazole)(3)](2+/3+) complex as the electron-transfer mediator. The biocatalyst was immobilized in this low-potential redox polymer on a carbon electrode. Upon the addition of sulfite to the immobilized separate Moco domain, the generation of a significant catalytic current demonstrated that the catalytic center is effectively wired and active. The bioelectrocatalytic current of the wired separate catalytic domain reached 25% of the signal of the wired full molybdoheme enzyme hSO, in which the heme b(5) is involved in the electron-transfer pathway. This is the first report on a catalytically active wired molybdenum cofactor domain. The formal potential of this electrochemical mediator is between the potentials of the two cofactors of hSO, and as hSO can occupy several conformations in the polymer matrix, it is imaginable that electron transfer from the catalytic site to the electrode through the osmium center occurs for the hSO molecules in which the Moco domain is sufficiently accessible. The observation of catalytic oxidation currents at low potentials is favorable for applications in bioelectronic devices. KW - Metalloenzymes KW - Enzyme catalysis KW - Immobilization KW - Osmium Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500034 SN - 1434-1948 SN - 1099-0682 IS - 21 SP - 3526 EP - 3531 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wu, Yunhua A1 - Wollenberger, Ursula A1 - Hofrichter, Martin A1 - Ullrich, Rene A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - Direct electron transfer of Agrocybe aegerita peroxygenase at electrodes modified with chitosan-capped Au nanoparticles and its bioelectrocatalysis to aniline JF - Sensors and actuators : B, Chemical N2 - Three different sizes of chitosan-capped Au nanoparticles were synthesized and were used to incorporate Agrocybe aegerita peroxygenase (AaeAPO) onto the surface of glassy carbon electrode. The direct electron transfer of AaeAPO was achieved in all films. The highest amount of electroactive enzyme and highest electron transfer rate constant k(s) of AaeAPO were obtained in the film with the smallest size of chitosan-capped Au nanoparticles. In anaerobic solutions, quasi-reversible oxidation and reduction are obtained with a formal potential of -0.280V vs. Ag/AgCl 1 M KCl in 100 mM (pH 7.0) PBS at scan rate of 1 V s(-1). Bioelectrocatalytic reduction currents can be obtained with the AaeAPO-modified electrode on addition of hydrogen peroxide. This reaction was suppressed when sodium azide, an inhibitor of AaeAPO, was present. Furthermore, the peroxide-dependent conversion of aniline was characterized and it was found that a polymer product via p-aminophenol is formed. And the AaeAPO biosensor was applied to determine aniline and p-aminophenol. KW - Agrocybe aegerita peroxygenase KW - Au nanoparticles KW - Direct electron transfer KW - Aniline biosensor KW - Bioelectrocatalysis Y1 - 2011 U6 - https://doi.org/10.1016/j.snb.2011.09.090 SN - 0925-4005 VL - 160 IS - 1 SP - 1419 EP - 1426 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Yarman, Aysu A1 - Badalyan, Artavazd A1 - Gajovic-Eichelmann, Nenad A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Enzyme electrode for aromatic compounds exploiting the catalytic activities of microperoxidase-11 JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - Microperoxidase-11 (MR-11) which has been immobilised in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode catalyzes the conversion of aromatic substances. This peroxide-dependent catalysis of microperoxidase has been applied in an enzyme electrode for the first time to indicate aromatic compounds such as aniline. 4-fluoroaniline, catechol and p-aminophenol. The electrode signal is generated by the cathodic reduction of the quinone or quinoneimine which is formed in the presence of both MP-II and peroxide from the substrate. The same sensor principle will be extended to aromatic drugs. KW - Microperoxidase-11 KW - Nanoparticles KW - p-Aminophenol KW - Aniline KW - Catechol KW - 4-Fluoroaniline KW - Biosensors Y1 - 2011 U6 - https://doi.org/10.1016/j.bios.2011.09.004 SN - 0956-5663 VL - 30 IS - 1 SP - 320 EP - 323 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Peng, Lei A1 - Utesch, Tillmann A1 - Yarman, Aysu A1 - Jeoung, Jae-Hun A1 - Steinborn, Silke A1 - Dobbek, Holger A1 - Mroginski, Maria Andrea A1 - Tanne, Johannes A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein JF - Chemistry - a European journal N2 - Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. KW - electrochemistry KW - electron transfer KW - heme proteins KW - molecular modeling KW - monolayers Y1 - 2015 U6 - https://doi.org/10.1002/chem.201405932 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 20 SP - 7596 EP - 7602 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jetzschmann, Katharina J. A1 - Jagerszki, Gyula A1 - Dechtrirat, Decha A1 - Yarman, Aysu A1 - Gajovic-Eichelmann, Nenad A1 - Gilsing, Hans-Detlev A1 - Schulz, Burkhard A1 - Gyurcsanyi, Robert E. A1 - Scheller, Frieder W. T1 - Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition JF - Advanced functional materials N2 - Effective recognition of enzymatically active tetrameric acetylcholinesterase (AChE) is accomplished by a hybrid nanofilm composed of a propidium-terminated self-assembled monolayer (Prop-SAM) which binds AChE via its peripheral anionic site (PAS) and an ultrathin electrosynthesized molecularly imprinted polymer (MIP) cover layer of a novel carboxylate-modified derivative of 3,4-propylenedioxythiophene. The rebinding of the AChE to the MIP/Prop-SAM nanofilm covered electrode is detected by measuring in situ the enzymatic activity. The oxidative current of the released thiocholine is dependent on the AChE concentration from approximate to 0.04 x 10(-6) to 0.4 x 10(-6)m. An imprinting factor of 9.9 is obtained for the hybrid MIP, which is among the best values reported for protein imprinting. The dissociation constant characterizing the strength of the MIP-AChE binding is 4.2 x 10(-7)m indicating the dominant role of the PAS-Prop-SAM interaction, while the benefit of the MIP nanofilm covering the Prop-SAM layer is the effective suppression of the cross-reactivity toward competing proteins as compared with the Prop-SAM. The threefold selectivity gain provided by i) the shape-specific MIP filter, ii) the propidium-SAM, iii) signal generation only by the AChE bound to the nanofilm shows promise for assessing AChE activity levels in cerebrospinal fluid. KW - acetylcholinesterase KW - biomimetic sensors KW - molecularly imprinted electropolymers KW - peripheral anionic site KW - propidium Y1 - 2015 U6 - https://doi.org/10.1002/adfm.201501900 SN - 1616-301X SN - 1616-3028 VL - 25 IS - 32 SP - 5178 EP - 5183 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yarman, Aysu A1 - Nagel, Thomas A1 - Gajovic-Eichelmann, Nenad A1 - Fischer, Anna A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - We report on the redox behaviour of the microperoxidase-11 (MP-11) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. MP-11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP-11 at high scan rate is between 350+/-50 pmol cm(-2), which reflects a multilayer process. The formal potential (E degrees') of MP-11 in the gold nanoparticles-chitosan film was estimated to be -(267.7+/-2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) starts at 1.21 s(-1) and levels off at 6.45 s(-1) in the scan rate range from 0.1 to 2.0 V s(-1). Oxidation and reduction of MP-11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP-11. KW - Microperoxidase KW - Direct electron transfer KW - Nanoparticles KW - Hydrogen peroxide KW - Superoxide KW - Bioelectrocatalysis Y1 - 2011 U6 - https://doi.org/10.1002/elan.201000535 SN - 1040-0397 VL - 23 IS - 3 SP - 611 EP - 618 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - The first electrochemical MIP sensor for tamoxifen JF - Sensors N2 - We present an electrochemical MIP sensor for tamoxifen (TAM)-a nonsteroidal anti-estrogen-which is based on the electropolymerisation of an O-phenylenediamine. resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only. bulk. MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at + 1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences. KW - molecularly imprinted polymers KW - anticancer drug KW - tamoxifen KW - electropolymerisation Y1 - 2014 U6 - https://doi.org/10.3390/s140507647 SN - 1424-8220 VL - 14 IS - 5 SP - 7647 EP - 7654 PB - MDPI CY - Basel ER - TY - JOUR A1 - Neumann, Bettina A1 - Yarman, Aysu A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Characterization of the enhanced peroxidatic activity of amyloid beta peptide-hemin complexes towards neurotransmitters JF - Analytical & bioanalytical chemistry N2 - Binding of heme to the amyloid peptides A beta 40/42 is thought to be an initial step in the development of symptoms in the early stages of Alzheimer's disease by enhancing the intrinsic peroxidatic activity of heme. We found considerably higher acceleration of the reaction for the physiologically relevant neurotransmitters dopamine and serotonin than reported earlier for the artificial substrate 3,3',5,5'-tetramethylbenzidine (TMB). Thus, the binding of hemin to A beta peptides might play an even more crucial role in the early stages of Alzheimer's disease than deduced from these earlier results. To mimic complex formation, a new surface architecture has been developed: The interaction between the truncated amyloid peptide A beta 1-16 and hemin immobilized on an aminohexanethiol spacer on a gold electrode has been analyzed by cyclic voltammetry. The resulting complex has a redox pair with a 25 mV more cathodic formal potential than hemin alone. KW - Peroxidatic activity Y1 - 2014 U6 - https://doi.org/10.1007/s00216-014-7822-8 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3359 EP - 3364 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Yarman, Aysu A1 - Gröbe, Glenn A1 - Neumann, Bettina A1 - Kinne, Mathias A1 - Gajovic-Eichelmann, Nenad A1 - Wollenberger, Ursula A1 - Hofrichter, Martin A1 - Ullrich, Rene A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - The aromatic peroxygenase from Marasmius rutola-a new enzyme for biosensor applications JF - Analytical & bioanalytical chemistry N2 - The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of -278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe(2+)/Fe(3+) redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed. KW - Unspecific peroxygenase KW - Cytochrome P450 KW - Biosensors KW - Phenolic substances Y1 - 2012 U6 - https://doi.org/10.1007/s00216-011-5497-y SN - 1618-2642 VL - 402 IS - 1 SP - 405 EP - 412 PB - Springer CY - Heidelberg ER -