TY - JOUR A1 - Amour, Frederic A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Agar, Susan M. A1 - Benson, Gregory S. A1 - Tomas, Sara A1 - Alway, Robert A1 - Kabiri, Lachen T1 - Capturing and modelling metre-scale spatial facies heterogeneity in a Jurassic ramp setting (Central High Atlas, Morocco) JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - Each simulation algorithm, including Truncated Gaussian Simulation, Sequential Indicator Simulation and Indicator Kriging is characterized by different operating modes, which variably influence the facies proportion, distribution and association of digital outcrop models, as shown in clastic sediments. A detailed study of carbonate heterogeneity is then crucial to understanding these differences and providing rules for carbonate modelling. Through a continuous exposure of Bajocian carbonate strata, a study window (320 m long, 190 m wide and 30 m thick) was investigated and metre-scale lithofacies heterogeneity was captured and modelled using closely-spaced sections. Ten lithofacies, deposited in a shallow-water carbonate-dominated ramp, were recognized and their dimensions and associations were documented. Field data, including height sections, were georeferenced and input into the model. Four models were built in the present study. Model A used all sections and Truncated Gaussian Simulation during the stochastic simulation. For the three other models, Model B was generated using Truncated Gaussian Simulation as for Model A, Model C was generated using Sequential Indicator Simulation and Model D was generated using Indicator Kriging. These three additional models were built by removing two out of eight sections from data input. The removal of sections allows direct insights on geological uncertainties at inter-well spacings by comparing modelled and described sections. Other quantitative and qualitative comparisons were carried out between models to understand the advantages/disadvantages of each algorithm. Model A is used as the base case. Indicator Kriging (Model D) simplifies the facies distribution by assigning continuous geological bodies of the most abundant lithofacies to each zone. Sequential Indicator Simulation (Model C) is confident to conserve facies proportion when geological heterogeneity is complex. The use of trend with Truncated Gaussian Simulation is a powerful tool for modelling well-defined spatial facies relationships. However, in shallow-water carbonate, facies can coexist and their association can change through time and space. The present study shows that the scale of modelling (depositional environment or lithofacies) involves specific simulation constraints on shallow-water carbonate modelling methods. KW - 3D facies modelling KW - carbonate ramp KW - facies heterogeneity KW - Jurassic KW - modelling algorithms KW - scale Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3091.2011.01299.x SN - 0037-0746 VL - 59 IS - 4 SP - 1158 EP - 1189 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Tomas, Sara A1 - Zitzmann, Max A1 - Homann, Martin A1 - Rumpf, Michael A1 - Amour, Frederic A1 - Benisek, Merle-Friederike A1 - Betzler, Christian A1 - Mutti, Maria T1 - From ramp to platform : building a 3D model of depositional geometries and facies architectures in transitional carbonates in the Miocene, northern Sardinia N2 - The depositional geometry and facies distribution of an Early Miocene (Burdigalian) carbonate system in the Perfugas Basin (NW Sardinia) comprise a well-exposed example of a transition from a ramp to a steep-flanked platform. The carbonate succession (Sedini Limestone Unit) is composed of two depositional sequences separated by a major erosional unconformity. The lower (sequence 1) records a ramp dominated by heterozoan producers and the upper (sequence 2) is dominated by photozoan producers and displays a gradual steepening of the depositional profile into a steep- flanked platform. This paper shows the process of creating a digital outcrop model including a facies model. This process consists of combining field data sets, including 17 sedimentary logs, and a spatial dataset consisting of differential global positioning system data points measured along key stratigraphic surfaces and sedimentary logs, with the goal of locking traditional field observations into a 3D spatial model. Establishing a precise geometrical framework and visualizing the overall change in the platform geometry and the related vertical and lateral facies variations of the Sedini carbonate platform, allows us to better understand the sedimentary processes leading to the geometrical turn- over of the platform. Furthermore, a detailed facies modeling helps us to gain insight into the detailed depositional dynamics. The final model reproduces faithfully the depositional geometries observed in the outcrops and helps in understanding the relationships between facies and architectural framework at the basin scale. Moreover, it provides the basis to characterize semiquantitatively regional sedimentological features and to make further reservoir and subsurface analogue studies. Y1 - 2010 UR - http://www.springerlink.com/content/110833 U6 - https://doi.org/10.1007/s10347-009-0203-7 SN - 0172-9179 ER - TY - JOUR A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Amour, Frederic A1 - Mutti, Maria A1 - Preston, Rosalind A1 - Whitaker, Fiona F. A1 - Peterhänsel, Arndt A1 - Egenhoff, Sven O. A1 - Dunn, Paul A. A1 - Agar, Susan M. T1 - Triassic Latemar cycle tops - Subaerial exposure of platform carbonates under tropical arid climate JF - Sedimentary geology : international journal of applied and regional sedimentology N2 - The Triassic Latemar platform in the Dolomites, Italy, is the site of several ongoing controversies. Perhaps the most interesting debate focuses on apparent cyclic deposition within the Latemar platform, whose nature and duration are still open to debate. Further disagreement concerns the lack of meteoric diagenesis-related isotope shifts at cycle tops that bear circumstantial petrographic evidence for subaerial emergence. Here, an evaluation of the nature of Latemar cycle tops is presented combining evidence from previous work and new field, petrographic and geochemical data. Cycle tops are ranked according to increasing exposure duration and spatial extent: type I surfaces lacking unequivocal evidence of prolonged supratidal conditions; type II dolomite caps formed in warm, evaporitic, intertidal lagoonal waters followed by exposure of perhaps intermediate duration; type III clastic-rich, red calcareous horizons with some showing platform-wide extent, representing prolonged supratidal conditions, and type IV discontinuities in tepee belts, genetically related to type II and III surfaces, but likely representing shorter-lived exposure stages. Petrographic and geochemical criteria indicate that most diagenesis occurred in the shallow marine and burial domain whilst an extensive meteoric overprint of cycle tops is lacking. This is underlined by the scarcity of meteoric diagenetic fabrics such as gravitational cements that, where present, are here interpreted as marine-vadose in origin. The scarcity of carbon and oxygen isotope signatures commonly assigned to subaerial exposure stages is best explained in the context of mid-Triassic climate. The low latitude, tropical but arid setting of the Latemar, situated in the western extension of the Tethys ocean, its isolation from nearby continental areas and overall short-term emergence episodes are in agreement with a limited degree of meteoric alteration of most cycle tops. High amounts of aeolian clastic material beneath some cycle tops, along with high Fe and Mn elemental abundances argue for intermittent subaerial conditions. This study proposes an enhancement of the classical Allan and Matthews (1982) isotope model for subaerial exposure under strongly arid climates. As the subaerial exposure nature of Latemar cycle tops, and therefore eustasy as the cause for cyclicity, have been previously challenged due to the lack of meteoric-induced isotopic signatures, the outcome of this study is of significance for the ongoing Latemar stratigraphic controversy. KW - Triassic KW - Latemar KW - Subaerial exposure KW - Carbonate platforms KW - Carbon and oxygen stable isotopes KW - Diagenesis Y1 - 2012 U6 - https://doi.org/10.1016/j.sedgeo.2012.02.008 SN - 0037-0738 VL - 265 IS - 28 SP - 1 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Amour, Frederic A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Benson, Gregory S. A1 - Agar, Susan M. A1 - Tomas, Sara A1 - Kabiri, Lahcen T1 - Outcrop analog for an oolitic carbonate ramp reservoir a scale-dependent geologic modeling approach based on stratigraphic hierarchy JF - AAPG bulletin N2 - Considerable effort has been devoted to the development of simulation algorithms for facies modeling, whereas a discussion of how to combine those techniques has not existed. The integration of multiple geologic data into a three-dimensional model, which requires the combination of simulation techniques, is yet a current challenge for reservoir modeling. This article presents a thought process that guides the acquisition and modeling of geologic data at various scales. Our work is based on outcrop data collected from a Jurassic carbonate ramp located in the High Atlas mountain range of Morocco. The study window is 1 km (0.6 mi) wide and 100 m (328.1 ft) thick. We describe and model the spatial and hierarchical arrangement of carbonate bodies spanning from largest to smallest: (1) stacking pattern of high-frequency depositional sequences, (2) facies association, and (3) lithofacies. Five sequence boundaries were modeled using differential global position system mapping and light detection and ranging data. The surface-based model shows a low-angle profile with modest paleotopographic relief at the inner-to-middle ramp transition. Facies associations were populated using truncated Gaussian simulation to preserve ordered trends between the inner, middle, and outer ramps. At the lithofacies scale, field observations and statistical analysis show a mosaiclike distribution that was simulated using a fully stochastic approach with sequential indicator simulation. This study observes that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The selection and implementation of different techniques customized for each level of the stratigraphic hierarchy will provide the essential computing flexibility to model carbonate settings. This study demonstrates that a scale-dependent modeling approach should be a common procedure when building subsurface and outcrop models. Y1 - 2013 U6 - https://doi.org/10.1306/10231212039 SN - 0149-1423 VL - 97 IS - 5 SP - 845 EP - 871 PB - American Association of Petroleum Geologists CY - Tulsa ER - TY - JOUR A1 - Tomas, Sara A1 - Homann, Martin A1 - Mutti, Maria A1 - Amour, Frederic A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Agar, Susan M. A1 - Kabiri, Lahcen T1 - Alternation of microbial mounds and ooid shoals (Middle Jurasssic, Morocco) - response to paleoenvironmental changes JF - Sedimentary geology : international journal of applied and regional sedimentology N2 - The occurrence of neritic microbial carbonates is often related to ecological refuges, where grazers and other competitors are reduced by environmental conditions, or to post-extinction events (e.g. in the Late Devonian, Early Triassic). Here, we present evidence for Middle Jurassic (Bajocian) microbial mounds formed in the normal marine, shallow neritic setting of an inner, ramp system from the High Atlas of Morocco. The microbial mounds are embedded in cross-bedded oolitic facies. Individual mounds show low relief domal geometries (up to 3 m high and 4.5 m across), but occasionally a second generation of mounds exhibits tabular geometries (<1 m high). The domes are circular in plan view and have intact tops, lacking evidence of current influence on mound preferred growth direction or distribution patterns, or truncation. The mound fades consists almost entirely of non-laminated, micritic thrombolites with branching morphologies and fine-grained, clotted and peloidal fabrics. Normal marine biota are present but infrequent. Several lines of evidence document that microbial mound growth alternates with time intervals of active ooid shoal deposition. This notion is of general significance when compared with modern Bahamian microbialites that co-exist with active sub-aquatic dunes. Furthermore, the lack of detailed studies of Middle Jurassic, normal marine shallow neritic microbial mounds adds a strong motivation for the present study. Specifically, Bajocian mounds formed on a firmground substratum during transgressive phases under condensed sedimentation. Furthermore, a transient increase in nutrient supply in the prevailing mesotrophic setting, as suggested by the heterotrophic-dominated biota, may have controlled microbial mound stages. KW - Microbial mounds KW - Thrombolites KW - Ooid shoals KW - Paleoenvironment KW - Jurassic Y1 - 2013 U6 - https://doi.org/10.1016/j.sedgeo.2013.05.008 SN - 0037-0738 VL - 294 SP - 68 EP - 82 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Amour, Frederic A1 - Mutti, Maria A1 - Tomas, Sara A1 - Agar, Susan M. A1 - Alway, Robert A1 - Kabiri, Lahcen T1 - Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco) JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - Discontinuity surfaces are widely recognized but often poorly understood features of epeiric carbonate settings. In sedimentary systems, these features often represent hiatus surfaces below biostratigraphic resolution and may represent a considerable portion of the time contained in the sediment record. From an applied perspective, discontinuities may represent horizontal flow barriers and result in reservoir compartmentalization. Here, a total of 80 condensed surfaces (S1), firmgrounds (S2) and hardgrounds (S3) from a Jurassic (Middle and Upper Bajocian Assoul Formation) ramp setting of the High Atlas in Morocco are carefully documented with respect to their morphology, their secondary impregnation by Fe and Mn oxides and phosphates and their palaeoecological record. A statistical frequency distribution of two surfaces of the S1 type, 1.1 surfaces of the S2 type and 0.4 surfaces of the S3 type per 10 section metres is observed along a 220 m long carbonate succession. Based on two stratigraphically and spatially separated study windows and correlative sections, the stratigraphic frequency distribution, the lateral extent and the nature of facies change across discontinuities are documented in a quantitative manner. Specific features of the study site include the considerable stratigraphic thickness of the Assoul Formation and the conspicuous absence of subaerial-exposure-related features. Based on the data presented here, firmground and hardground surfaces are best interpreted as maximum-regression-related features. Relative sea-level lowstand results in a lowered wave base, and wave orbitals and currents result in sea floor omission and lithification. Care must be taken to avoid overly simplistic interpretations, as differences in bathymetry and carbonate facies result in marked changes in discontinuity characteristics in proximal-distal transects. The data shown here are of significance for those concerned with the interpretation of shoal water carbonate environments and are instrumental in the building of more realistic carbonate reservoir flow models. KW - Atlas Mountains KW - carbonate ramp KW - discontinuity surfaces KW - hardgrounds KW - hydrodynamic level KW - Jurassic KW - palaeoecology KW - relative sea-level Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3091.2011.01251.x SN - 0037-0746 VL - 59 IS - 1 SP - 249 EP - 290 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Whitaker, F. F. A1 - Felce, G. P. A1 - Benson, Gregory S. A1 - Amour, Frédéric A1 - Mutti, Maria A1 - Smart, P. L. T1 - Simulating flow through forward sediment model stratigraphies: insights into climatic control of reservoir quality in isolated carbonate platforms JF - Petroleum geoscience N2 - Whilst sophisticated multiphase fluid flow models are routinely employed to understand behaviour of oil and gas reservoirs, high-resolution data describing the three-dimensional (3D) distribution of rock characteristics is rarely available to populate models. We present a new approach to developing a quantitative understanding of the effect of individual controls on the distribution of petrophysical properties and their impact on fluid flow. This involves simulating flow through high-detail permeability architectures generated by forward modelling of the coupled depositional-diagenetic evolution of isolated platforms using CARB3D(+). This workflow is exemplified by an investigation of interactions between subsidence and climate, and their expression in spatial variations in reservoir quality in an isolated carbonate platform of similar size and subsidence history to the Triassic Latemar Platform. Dissolutional lowering during subaerial exposure controls platform-top graininess via platform top hydrodynamics during the subsequent transgression. Dissolved carbonate is reprecipitated as cements by percolating meteoric waters. However, associated subsurface meteoric dissolution generates significant secondary porosity under a more humid climate. Slower subsidence enhances diagenetic overprinting during repeated exposure events. Single-phase streamline simulations show how early diagenesis develops more permeable fairways within the finer-grained condensed units that can act as thief zones for flow from the grainier but less diagenetically altered cyclic units. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2013-026 SN - 1354-0793 VL - 20 IS - 1 SP - 27 EP - 40 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Agada, S. A1 - Chen, F. A1 - Geiger, S. A1 - Toigulova, G. A1 - Agar, Susan M. A1 - Shekhar, R. A1 - Benson, Gregory S. A1 - Hehmeyer, O. A1 - Amour, Frédéric A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, A. T1 - Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue JF - Petroleum geoscience N2 - A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2012-096 SN - 1354-0793 VL - 20 IS - 1 SP - 125 EP - 142 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Shekhar, R. A1 - Sahni, I. A1 - Benson, Gregory S. A1 - Agar, Susan M. A1 - Amour, Frédéric A1 - Tomas, Sara A1 - Christ, Nicolas A1 - Alway, Robert A1 - Mutti, Maria A1 - Immenhauser, A. A1 - Karcz, Z. A1 - Kabiri, L. T1 - Modelling and simulation of a Jurassic carbonate ramp outcrop, Amellago, High Atlas Mountains, Morocco JF - Petroleum geoscience N2 - Carbonate reservoirs pose significant challenges for reservoir modelling and flow prediction due to heterogeneities in rock properties, limits to seismic resolution and limited constraints on subsurface data. Hence, a systematic and streamlined approach is needed to construct geological models and to quickly evaluate key sensitivities in the flow models. This paper discusses results from a reservoir analogue study of a Middle Jurassic carbonate ramp in the High Atlas Mountains of Morocco that has stratigraphic and structural similarities to selected Middle East reservoirs. For this purpose, high-resolution geological models were constructed from the integration of sedimentological, diagenetic and structural studies in the area. The models are approximately 1200 x 1250 m in size, and only faults (no fractures) with offsets greater than 1 m are included. Novel methods have been applied to test the response of flow simulations to the presence or absence of specific geological features, including proxies for hardgrounds, stylolites, patch reefs, and mollusc banks, as a way to guide the level of detail that is suitable for modelling objectives. Our general conclusion from the study is that the continuity of any geological feature with extreme permeability (high or low) has the most significant impact on flow. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2013-010 SN - 1354-0793 VL - 20 IS - 1 SP - 109 EP - 123 PB - Geological Soc. Publ. House CY - Bath ER - TY - THES A1 - Amour, Frédéric T1 - 3-D modeling of shallow-water carbonate systems : a scale-dependent approach based on quantitative outcrop studies T1 - 3-D Modellierung von Flachwasser-Karbonat-Sytemen : eine skalenabhängige Herangehensweise basierend auf quantitativen Aufschlussstudien N2 - The study of outcrop modeling is located at the interface between two fields of expertise, Sedimentology and Computing Geoscience, which respectively investigates and simulates geological heterogeneity observed in the sedimentary record. During the last past years, modeling tools and techniques were constantly improved. In parallel, the study of Phanerozoic carbonate deposits emphasized the common occurrence of a random facies distribution along single depositional domain. Although both fields of expertise are intrinsically linked during outcrop simulation, their respective advances have not been combined in literature to enhance carbonate modeling studies. The present study re-examines the modeling strategy adapted to the simulation of shallow-water carbonate systems, based on a close relationship between field sedimentology and modeling capabilities. In the present study, the evaluation of three commonly used algorithms Truncated Gaussian Simulation (TGSim), Sequential Indicator Simulation (SISim), and Indicator Kriging (IK), were performed for the first time using visual and quantitative comparisons on an ideally suited carbonate outcrop. The results show that the heterogeneity of carbonate rocks cannot be fully simulated using one single algorithm. The operating mode of each algorithm involves capabilities as well as drawbacks that are not capable to match all field observations carried out across the modeling area. Two end members in the spectrum of carbonate depositional settings, a low-angle Jurassic ramp (High Atlas, Morocco) and a Triassic isolated platform (Dolomites, Italy), were investigated to obtain a complete overview of the geological heterogeneity in shallow-water carbonate systems. Field sedimentology and statistical analysis performed on the type, morphology, distribution, and association of carbonate bodies and combined with palaeodepositional reconstructions, emphasize similar results. At the basin scale (x 1 km), facies association, composed of facies recording similar depositional conditions, displays linear and ordered transitions between depositional domains. Contrarily, at the bedding scale (x 0.1 km), individual lithofacies type shows a mosaic-like distribution consisting of an arrangement of spatially independent lithofacies bodies along the depositional profile. The increase of spatial disorder from the basin to bedding scale results from the influence of autocyclic factors on the transport and deposition of carbonate sediments. Scale-dependent types of carbonate heterogeneity are linked with the evaluation of algorithms in order to establish a modeling strategy that considers both the sedimentary characteristics of the outcrop and the modeling capabilities. A surface-based modeling approach was used to model depositional sequences. Facies associations were populated using TGSim to preserve ordered trends between depositional domains. At the lithofacies scale, a fully stochastic approach with SISim was applied to simulate a mosaic-like lithofacies distribution. This new workflow is designed to improve the simulation of carbonate rocks, based on the modeling of each scale of heterogeneity individually. Contrarily to simulation methods applied in literature, the present study considers that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The implementation of different techniques customized for each level of the stratigraphic hierarchy provides the essential computing flexibility to model carbonate systems. Closer feedback between advances carried out in the field of Sedimentology and Computing Geoscience should be promoted during future outcrop simulations for the enhancement of 3-D geological models. N2 - Das Modellieren von geologischen Aufschlüssen liegt der Schnittstelle zwischen zwei geo-logischen Teildisziplinen, der Sedimentologie und der geologischen Modellierung. Hierbei werden geologische Heterogenitäten untersucht und simuliert, welche im Aufschluss beobachtet wurden. Während der letzten Jahre haben sich die Werkzeuge und die Technik der Modellierung stetig weiter-entwickelt. Parallel dazu hat die Untersuchung der phanerozoischen Karbonatablagerungen ihren Fokus auf gemeinsamen Vorkommen von zufälligen Faziesverteilungen in beiden Ablagerungs-gebieten. Obwohl beide Teildisziplinen durch die Aufschlussmodellierung eigentlich verbunden sind, wurden ihre jeweiligen Vorteile in der Literatur nicht miteinander verbunden, um so eine Verbesserung ähnlicher Studien zu erreichen. Die vorliegende Studie überprüft erneut die Modellierungsstrategie, angepasst an die Simulation von Flachwasser-Karbonat-Systemen und basierend auf einer engen Beziehung zwischen Sedimentologie und Modellierung. Die vorliegende Arbeit behandelt erstmals die Evaluierung der drei am häufigsten verwendeten Algorithmen „Truncated Gaussian Simulation (TGSim)“, „Sequential Indicator Simulation (SISim)“ und „Indicator Kriging (IK)“, um sie visuell und quantitativ mit dem entsprechenden Aufschluss zu vergleichen. Die Ergebnisse zeigen, dass die Heterogenität von Karbonatgesteinen nicht komplett mit nur einem Algorithmus simuliert werden kann. Die Eigenschaften jedes einzelnen Algorithmus beinhalten Vor- und Nachteile, sodass kein Algorithmus alle Beobachtungen aus dem Aufschluss widerspiegelt. Die zwei Endglieder im Spektrum der Ablagerungsbedingungen von Karbonaten, eine flachwinklige, jurassische Karbonat-Rampe (Hoher Atlas, Marokko) und eine isolierte, triassische Plattform (Dolomiten, Italien), wurden untersucht, um einen kompletten Überblick über die verschiedenen Heterogenitäten in Flachwasser-Karbonat- Systemen zu erhalten. Sedimentologische und statistische Analysen wurden für die verschiedenen Typen, Morphologien, Verteilungen und Assoziationen von Karbonatablagerungen durchgeführt und mit paläogeografischen Rekonstruktionen kombiniert und zeigen ähnliche Ergebnisse. Im Beckenmaßstab zeigen die Faziesassoziationen, bestehend aus Fazieszonen mit ähnlichen Ablagerungsbedingungen, einen linearen und kontinuierlichen Übergang zwischen den einzelnen Ablagerungsbereichen. Im Gegensatz dazu zeigt für einzelne Lithofaziestypen im Maßstab einzelner Schichten eine mosaikartige Verteilung, bestehend aus einer Anordnung räumlich unabhängiger Lithofazieszonen entlang des Ablagerungsprofils. Das Ansteigen der räumlichen Unordnung von der beckenweiten Ablagerung zur Ablagerung einzelner Schichten resultiert aus dem Einfluss autozyklischer Faktoren bei der Ablagerung von Karbonaten. Die Skalenabhängigkeit von Karbonat-Heterogenität ist mit der Auswertung der Algorithmen verknüpft um eine Modellierungsstrategie zu etablieren, welche sowohl die sedimentären Charakteristiken des Aufschlusses als auch die Modellierfähigkeit berücksichtigt. Für die Modellierung der Ablagerungssequenzen wurde ein flächenbasierter Ansatz verwendet. Die Faziesassoziationen wurden durch die Benutzung des TGSim-Algorithmus simuliert, um die regulären Trends zwischen den einzelnen Ablagerungsgebieten zu erhalten. Im Bereich der verschiedenen Lithofazien wurde mit dem SISim-Algorithmus, ein voll stochastischer Ansatz angewendet, um die mosaikartige Verteilung der Lithofazies-Typen zu simulieren. Dieser neue Arbeitsablauf wurde konzipiert, um die Simulierung von Karbonaten auf Basis der einzelnen Heterogenitäten in verschiedenen Größenordnungen zu verbessern. Im Gegensatz zu den in der Literatur angewendeten Simulationsmethoden berücksichtigt diese Studie, dass eine einzelne Modellierungstechnik die natürlichen Ablagerungsmuster und Variabilität von Karbonaten wahrscheinlich nicht korrekt abbildet. Die Einführung verschiedener Techniken, angepasst auf die verschiedenen Ebenen der stratigrafischen Hierarchie, liefert die notwendige Flexibilität um Karbonatsysteme korrekt zu modellieren. Eine enge Verknüpfung zwischen den Fortschritten auf dem Gebieten der Sedimentologie und dem Gebiet der modellierenden Geowissenschaften sollte weiterhin bestehen, um auch zukünftig bei der Simulation von geologischen Gelände-Aufschlüssen eine Verbesserung der 3-D-Modellierung zu erreichen. KW - Karbonat KW - 3-D Modellierung KW - Aufschluss-Modellierung KW - Quantitative Daten KW - Skala KW - Stochastischer Algorithmus KW - Carbonate KW - 3-D outcrop modeling KW - quantitative data KW - scale KW - stochastic algorithms Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66621 ER -