TY - JOUR A1 - Scherbaum, Frank A1 - Krüger, Frank A1 - Weber, Michael H. T1 - Double beam imaging : mapping lower mantle heterogeneities using combinations of source and receiver arrays Y1 - 1997 ER - TY - JOUR A1 - Blaser, Lilian A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Scaling relations of earthquake source parameter estimates with special focus on subduction environment N2 - Earthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well as orthogonal regression and analyzed regarding the difference between continental and subduction zone/oceanic relationships. Additionally, the effect of technical progress in earthquake parameter estimation on scaling relations was tested as well as the influence of different fault mechanisms. For a given moment magnitude we found shorter but wider rupture areas of thrust events compared to Wells and Coppersmith (1994). The thrust event relationships for pure continental and pure subduction zone rupture areas were found to be almost identical. The scaling relations differ significantly for slip types. The exclusion of events prior to 1964 when the worldwide standard seismic network was established resulted in a remarkable effect on strike-slip scaling relations: the data do not show any saturation of rupture width of strike- slip earthquakes. Generally, rupture area seems to scale with mean slip independent of magnitude. The aspect ratio L/W, however, depends on moment and differs for each slip type. Y1 - 2010 UR - http://bssa.geoscienceworld.org/ U6 - https://doi.org/10.1785/0120100111 SN - 0037-1106 ER - TY - JOUR A1 - Blaser, Lilian A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Scherbaum, Frank T1 - Probabilistic tsunami threat assessment of 10 recent earthquakes offshore Sumatra JF - Geophysical journal international N2 - Tsunami early warning (TEW) is a challenging task as a decision has to be made within few minutes on the basis of incomplete and error-prone data. Deterministic warning systems have difficulties in integrating and quantifying the intrinsic uncertainties. In contrast, probabilistic approaches provide a framework that handles uncertainties in a natural way. Recently, we have proposed a method using Bayesian networks (BNs) that takes into account the uncertainties of seismic source parameter estimates in TEW. In this follow-up study, the method is applied to 10 recent large earthquakes offshore Sumatra and tested for its performance. We have evaluated both the general model performance given the best knowledge we have today about the source parameters of the 10 events and the corresponding response on seismic source information evaluated in real-time. We find that the resulting site-specific warning level probabilities represent well the available tsunami wave measurements and observations. Difficulties occur in the real-time tsunami assessment if the moment magnitude estimate is severely over- or underestimated. In general, the probabilistic analysis reveals a considerably large range of uncertainties in the near-field TEW. By quantifying the uncertainties the BN analysis provides important additional information to a decision maker in a warning centre to deal with the complexity in TEW and to reason under uncertainty. KW - Probabilistic forecasting KW - Tsunamis KW - Early warning KW - Indian Ocean Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2011.05324.x SN - 0956-540X VL - 188 IS - 3 SP - 1273 EP - 1284 PB - Wiley-Blackwell CY - Malden ER - TY - GEN A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1320 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588828 SN - 1866-8372 IS - 1320 ER - TY - JOUR A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms JF - Solid earth N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. Y1 - 2023 U6 - https://doi.org/10.5194/se-14-181-2023 SN - 1869-9529 VL - 14 IS - 2 SP - 181 EP - 195 PB - Coepernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Krüger, Frank A1 - Scherbaum, Frank T1 - The 29 September 1969, Ceres, South Africa, Earthquake: full waveform moment tensor inversion for point source and kinematic source parameters JF - Bulletin of the Seismological Society of America N2 - The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s). Y1 - 2014 U6 - https://doi.org/10.1785/0120130209 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 1 SP - 576 EP - 581 PB - Seismological Society of America CY - Albany ER - TY - GEN A1 - Rößler, Dirk A1 - Hiemer, Stephan A1 - Bach, Christoph A1 - Delavaud, Elise A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Sauer, David A1 - Scherbaum, Frank A1 - Vollmer, Daniel T1 - Small-aperture seismic array monitors Vogtland earthquake swarm in 2008/09 N2 - The most recent intense earthquake swarm in the Vogtland lasted from 6 October 2008 until January 2009. Greatest magnitudes exceeded M3.5 several times in October making it the greatest swarm since 1985/86. In contrast to the swarms in 1985 and 2000, seismic moment release was concentrated near swarm onset. Focal area and temporal evolution are similar to the swarm in 2000. Work hypothysis: uprising upper-mantle fluids trigger swarm earthquakes at low stress level. To monitor the seismicity, the University of Potsdam operated a small aperture seismic array at 10 km epicentral distance between 18 October 2008 and 18 March 2009. Consisting of 12 seismic stations and 3 additional microphones, the array is capable of detecting earthquakes from larger to very low magnitudes (M<-1) as well as associated air waves. We use array techniques to determine properties of the incoming wavefield: noise, direct P and S waves, and converted phases. KW - Vogtland KW - Erdbebenschwarm 2008 KW - Arrayseismologie KW - Vogtland KW - West Bohemia KW - earthquake swarm KW - array seismology Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29185 ER - TY - JOUR A1 - Abdalla, Hassan E. A1 - Abramowski, Attila A1 - Aharonian, Felix A. A1 - Benkhali, Faiçal Ait A1 - Akhperjanian, A. G. A1 - Angüner, Ekrem Oǧuzhan A1 - Arrieta, M. A1 - Aubert, Pierre A1 - Backes, Michael A1 - Balzer, Arnim A1 - Barnard, Michelle A1 - Becherini, Yvonne A1 - Tjus, Julia Becker A1 - Berge, David A1 - Bernhard, Sabrina A1 - Bernlöhr, K. A1 - Birsin, E. A1 - Blackwell, R. A1 - Bottcher, Markus A1 - Boisson, Catherine A1 - Bolmont, J. A1 - Bordas, Pol A1 - Bregeon, Johan A1 - Brun, Francois A1 - Brun, Pierre A1 - Bryan, Mark A1 - Bulik, Tomasz A1 - Capasso, M. A1 - Carr, John A1 - Casanova, Sabrina A1 - Chakraborty, N. A1 - Chalme-Calvet, R. A1 - Chaves, Ryan C. G. A1 - Chen, Andrew A1 - Chevalier, J. A1 - Chretien, M. A1 - Colafrancesco, Sergio A1 - Cologna, Gabriele A1 - Condon, B. A1 - Conrad, Jan A1 - Couturier, C. A1 - Cui, Y. A1 - Davids, I. D. A1 - Degrange, B. A1 - Deil, Christoph A1 - deWilt, P. A1 - Djannati-Atai, Arache A1 - Domainko, Wilfried A1 - Donath, Axel A1 - Dubus, Guillaume A1 - Dutson, Kate A1 - Dyks, J. A1 - Dyrda, M. A1 - Edwards, T. A1 - Egberts, Kathrin A1 - Eger, P. A1 - Ernenwein, J. -P. A1 - Eschbach, S. A1 - Farnier, C. A1 - Fegan, Stuart A1 - Fernandes, M. V. A1 - Fiasson, A. A1 - Fontaine, G. A1 - Foerster, A. A1 - Funk, S. A1 - Füßling, Matthias A1 - Gabici, Stefano A1 - Gajdus, M. A1 - Gallant, Y. A. A1 - Garrigoux, T. A1 - Giavitto, Gianluca A1 - Giebels, B. A1 - Glicenstein, J. F. A1 - Gottschall, Daniel A1 - Goyal, A. A1 - Grondin, M. -H. A1 - Grudzinska, M. A1 - Hadasch, Daniela A1 - Hahn, J. A1 - Hawkes, J. A1 - Heinzelmann, G. A1 - Henri, Gilles A1 - Hermann, G. A1 - Hervet, Olivier A1 - Hillert, A. A1 - Hinton, James Anthony A1 - Hofmann, Werner A1 - Hoischen, Clemens A1 - Holler, M. A1 - Horns, D. A1 - Ivascenko, Alex A1 - Jacholkowska, A. A1 - Jamrozy, Marek A1 - Janiak, M. A1 - Jankowsky, D. A1 - Jankowsky, Felix A1 - Jingo, M. A1 - Jogler, Tobias A1 - Jouvin, Lea A1 - Jung-Richardt, Ira A1 - Kastendieck, M. A. A1 - Katarzynski, Krzysztof A1 - Katz, Uli A1 - Kerszberg, D. A1 - Khelifi, B. A1 - Kieffer, M. A1 - King, J. A1 - Klepser, S. A1 - Klochkov, Dmitry A1 - Kluzniak, W. A1 - Kolitzus, D. A1 - Komin, Nu. A1 - Kosack, K. A1 - Krakau, S. A1 - Kraus, Michael A1 - Krayzel, F. A1 - Kruger, P. P. A1 - Laffon, H. A1 - Lamanna, G. A1 - Lau, Jeanie A1 - Lees, J. -P. A1 - Lefaucheur, J. A1 - Lefranc, V. A1 - Lemiere, A. A1 - Lemoine-Goumard, M. A1 - Lenain, J. -P. A1 - Leser, Eva A1 - Lohse, Thomas A1 - Lorentz, M. A1 - Lui, R. A1 - Lypova, Iryna A1 - Marandon, Vincent A1 - Marcowith, Alexandre A1 - Mariaud, C. A1 - Marx, R. A1 - Maurin, G. A1 - Maxted, N. A1 - Mayer, Michael A1 - Meintjes, Petrus Johannes A1 - Menzler, U. A1 - Meyer, Manuel A1 - Mitchell, A. M. W. A1 - Moderski, R. A1 - Mohamed, M. A1 - Mora, K. A1 - Moulin, E. A1 - Murach, T. A1 - de Naurois, Mathieu A1 - Niederwanger, F. A1 - Niemiec, J. A1 - Oakes, L. A1 - Odaka, Hirokazu A1 - Ohm, Stefan A1 - Oettl, S. A1 - Ostrowski, M. A1 - Oya, I. A1 - Padovani, Marco A1 - Panter, M. A1 - Parsons, R. D. A1 - Arribas, M. Paz A1 - Pekeur, N. W. A1 - Pelletier, G. A1 - Petrucci, P. -O. A1 - Peyaud, B. A1 - Pita, S. A1 - Poon, Helen A1 - Prokhorov, Dmitry A1 - Prokoph, Heike A1 - Puehlhofer, Gerd A1 - Punch, Michael A1 - Quirrenbach, Andreas A1 - Raab, S. A1 - Reimer, Anita A1 - Reimer, Olaf A1 - Renaud, M. A1 - de los Reyes, R. A1 - Rieger, Frank A1 - Romoli, Carlo A1 - Rosier-Lees, S. A1 - Rowell, G. A1 - Rudak, B. A1 - Rulten, C. B. A1 - Sahakian, V. A1 - Salek, David A1 - Sanchez, David A. A1 - Santangelo, Andrea A1 - Sasaki, Manami A1 - Schlickeiser, Reinhard A1 - Schussler, F. A1 - Schulz, Andreas A1 - Schwanke, U. A1 - Schwemmer, S. A1 - Seyffert, A. S. A1 - Shafi, N. A1 - Simoni, R. A1 - Sol, H. A1 - Spanier, Felix A1 - Spengler, G. A1 - Spiess, F. A1 - Stawarz, Lukasz A1 - Steenkamp, R. A1 - Stegmann, Christian A1 - Stinzing, F. A1 - Stycz, K. A1 - Sushch, Iurii A1 - Tavernet, J. -P. A1 - Tavernier, T. A1 - Taylor, A. M. A1 - Terrier, R. A1 - Tluczykont, Martin A1 - Trichard, C. A1 - Tuffs, R. A1 - van der Walt, Johan A1 - van Eldik, Christopher A1 - van Soelen, Brian A1 - Vasileiadis, Georges A1 - Veh, J. A1 - Venter, C. A1 - Viana, A. A1 - Vincent, P. A1 - Vink, Jacco A1 - Voisin, F. A1 - Voelk, Heinrich J. A1 - Vuillaume, Thomas A1 - Wadiasingh, Z. A1 - Wagner, Stefan J. A1 - Wagner, P. A1 - Wagner, R. M. A1 - White, R. A1 - Wierzcholska, Alicja A1 - Willmann, P. A1 - Woernlein, A. A1 - Wouters, Denis A1 - Yang, R. A1 - Zabalza, Victor A1 - Zaborov, D. A1 - Zacharias, M. A1 - Zdziarski, A. A. A1 - Zech, Andreas A1 - Zefi, F. A1 - Ziegler, A. A1 - Zywucka, Natalia T1 - Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with HESS JF - Physical review letters N2 - The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using gamma-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant gamma-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section . These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach values of 6 x 10(-26) cm(3) s(-1) in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 x 10(-26) cm(3) s(-1) in the tau(+)tau(-) channel for a 1 TeV mass. For the first time, ground-based gamma-ray observations have reached sufficient sensitivity to probe values expected from the thermal relic density for TeV DM particles. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.117.111301 SN - 0031-9007 SN - 1079-7114 VL - 117 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sremcevic, Miodrag A1 - Krivov, Alexander V. A1 - Krüger, Harald A1 - Spahn, Frank T1 - Impact-generated dust clouds around planetary satellites : model versus Galileo N2 - This paper focuses on tenuous dust clouds of Jupiter's Galilean moons Europa, Ganymede and Callisto. In a companion paper (Sremcevic et al., Planet. Space Sci. 51 (2003) 455-471) an analytical model of impact-generated ejecta dust clouds surrounding planetary satellites has been developed. The main aim of the model is to predict the asymmetries in the dust clouds which may arise from the orbital motion of the parent body through a field of impactors. The Galileo dust detector data from flybys at Europa, Ganymede and Callisto are compatible with the model, assuming projectiles to be interplanetary micrometeoroids. The analysis of the data suggests that two interplanetary impactor populations are most likely the source of the measured dust clouds: impactors with isotropically distributed velocities and micrometeoroids in retrograde orbits. Other impactor populations, namely those originating in the Jovian system, or interplanetary projectiles with low orbital eccentricities and inclinations, or interstellar stream particles, can be ruled out by the statistical analysis of the data. The data analysis also suggests that the mean ejecta velocity angle to the normal at the satellite surface is around 30°, which is in agreement with laboratory studies of the hypervelocity impacts. © 2004 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0032-0633 ER - TY - JOUR A1 - Srama, Ralf A1 - Ahrens, Thomas J. A1 - Altobelli, Nicolas A1 - Auer, S. A1 - Bradley, J. G. A1 - Burton, M. A1 - Dikarev, V. V. A1 - Economou, T. A1 - Fechtig, Hugo A1 - Görlich, M. A1 - Grande, M. A1 - Graps, Amara A1 - Grün, Eberhard A1 - Havnes, Ove A1 - Helfert, Stefan A1 - Horanyi, Mihaly A1 - Igenbergs, E. A1 - Jessberger, Elmar K. A1 - Johnson, T. V. A1 - Kempf, Sascha A1 - Krivov, Alexander v. A1 - Krüger, Harald A1 - Mocker-Ahlreep, Anna A1 - Moragas-Klostermeyer, Georg A1 - Lamy, Philippe A1 - Landgraf, Markus A1 - Linkert, Dietmar A1 - Linkert, G. A1 - Lura, F. A1 - McDonnell, J. A. M. A1 - Moehlmann, Dirk A1 - Morfill, Gregory E. A1 - Muller, M. A1 - Roy, M. A1 - Schafer, G. A1 - Schlotzhauer, G. A1 - Schwehm, Gerhard H. A1 - Spahn, Frank A1 - Stübig, M. A1 - Svestka, Jiri A1 - Tschernjawski, V T1 - The Cassini Cosmic Dust Analyzer N2 - The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10(-19) and 10(-9) kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic held on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption. The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and I I dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as I impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps Y1 - 2004 SN - 0038-6308 ER - TY - JOUR A1 - Kirvov, Alexander V. A1 - Wardinski, Ingo A1 - Spahn, Frank A1 - Krüger, Harald A1 - Grün, Eberhard T1 - Dust on the outskirts of the Jovian System Y1 - 2002 UR - http://www.idealibrary.com/links/doi/10.1006/icar.2002.6848 ER - TY - JOUR A1 - Arridge, Christopher S. A1 - Achilleos, N. A1 - Agarwal, Jessica A1 - Agnor, C. B. A1 - Ambrosi, R. A1 - Andre, N. A1 - Badman, S. V. A1 - Baines, K. A1 - Banfield, D. A1 - Barthelemy, M. A1 - Bisi, M. M. A1 - Blum, J. A1 - Bocanegra-Bahamon, T. A1 - Bonfond, B. A1 - Bracken, C. A1 - Brandt, P. A1 - Briand, C. A1 - Briois, C. A1 - Brooks, S. A1 - Castillo-Rogez, J. A1 - Cavalie, T. A1 - Christophe, B. A1 - Coates, Andrew J. A1 - Collinson, G. A1 - Cooper, J. F. A1 - Costa-Sitja, M. A1 - Courtin, R. A1 - Daglis, I. A. A1 - De Pater, Imke A1 - Desai, M. A1 - Dirkx, D. A1 - Dougherty, M. K. A1 - Ebert, R. W. A1 - Filacchione, Gianrico A1 - Fletcher, Leigh N. A1 - Fortney, J. A1 - Gerth, I. A1 - Grassi, D. A1 - Grodent, D. A1 - Grün, Eberhard A1 - Gustin, J. A1 - Hedman, M. A1 - Helled, R. A1 - Henri, P. A1 - Hess, Sebastien A1 - Hillier, J. K. A1 - Hofstadter, M. H. A1 - Holme, R. A1 - Horanyi, M. A1 - Hospodarsky, George B. A1 - Hsu, S. A1 - Irwin, P. A1 - Jackman, C. M. A1 - Karatekin, O. A1 - Kempf, Sascha A1 - Khalisi, E. A1 - Konstantinidis, K. A1 - Kruger, H. A1 - Kurth, William S. A1 - Labrianidis, C. A1 - Lainey, V. A1 - Lamy, L. L. A1 - Laneuville, Matthieu A1 - Lucchesi, D. A1 - Luntzer, A. A1 - MacArthur, J. A1 - Maier, A. A1 - Masters, A. A1 - McKenna-Lawlor, S. A1 - Melin, H. A1 - Milillo, A. A1 - Moragas-Klostermeyer, Georg A1 - Morschhauser, Achim A1 - Moses, J. I. A1 - Mousis, O. A1 - Nettelmann, N. A1 - Neubauer, F. M. A1 - Nordheim, T. A1 - Noyelles, B. A1 - Orton, G. S. A1 - Owens, Mathew A1 - Peron, R. A1 - Plainaki, C. A1 - Postberg, F. A1 - Rambaux, N. A1 - Retherford, K. A1 - Reynaud, Serge A1 - Roussos, E. A1 - Russell, C. T. A1 - Rymer, Am. A1 - Sallantin, R. A1 - Sanchez-Lavega, A. A1 - Santolik, O. A1 - Saur, J. A1 - Sayanagi, Km. A1 - Schenk, P. A1 - Schubert, J. A1 - Sergis, N. A1 - Sittler, E. C. A1 - Smith, A. A1 - Spahn, Frank A1 - Srama, Ralf A1 - Stallard, T. A1 - Sterken, V. A1 - Sternovsky, Zoltan A1 - Tiscareno, M. A1 - Tobie, G. A1 - Tosi, F. A1 - Trieloff, M. A1 - Turrini, D. A1 - Turtle, E. P. A1 - Vinatier, S. A1 - Wilson, R. A1 - Zarkat, P. T1 - The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets JF - Planetary and space science N2 - Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. KW - Uranus KW - Magnetosphere KW - Atmosphere KW - Natural satellites KW - Rings KW - Planetary interior Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.08.009 SN - 0032-0633 VL - 104 SP - 122 EP - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Srama, Ralf A1 - Kempf, S. A1 - Moragas-Klostermeyer, Georg A1 - Helfert, S. A1 - Ahrens, T. J. A1 - Altobelli, N. A1 - Auer, S. A1 - Beckmann, U. A1 - Bradley, J. G. A1 - Burton, M. A1 - Dikarev, V. V. A1 - Economou, T. A1 - Fechtig, H. A1 - Green, S. F. A1 - Grande, M. A1 - Havnes, O. A1 - Hillierf, J.K. A1 - Horanyii, M. A1 - Igenbergsj, E. A1 - Jessberger, E. K. A1 - Johnson, T. V. A1 - Krüger, H. A1 - Matt, G. A1 - McBride, N. A1 - Mocker, A. A1 - Lamy, P. A1 - Linkert, D. A1 - Linkert, G. A1 - Lura, F. A1 - McDonnell, J.A.M. A1 - Möhlmann, D. A1 - Morfill, G. E. A1 - Postberg, F. A1 - Roy, M. A1 - Schwehm, G.H. A1 - Spahn, Frank A1 - Svestka, J. A1 - Tschernjawski, V. A1 - Tuzzolino, A. J. A1 - Wäsch, R. A1 - Grün, E. T1 - In situ dust measurements in the inner Saturnian system JF - Planetary and space science N2 - In July 2004 the Cassini–Huygens mission reached the Saturnian system and started its orbital tour. A total of 75 orbits will be carried out during the primary mission until August 2008. In these four years Cassini crosses the ring plane 150 times and spends approx. 400 h within Titan's orbit. The Cosmic Dust Analyser (CDA) onboard Cassini characterises the dust environment with its extended E ring and embedded moons. Here, we focus on the CDA results of the first year and we present the Dust Analyser (DA) data within Titan's orbit. This paper does investigate High Rate Detector data and dust composition measurements. The authors focus on the analysis of impact rates, which were strongly variable primarily due to changes of the spacecraft pointing. An overview is given about the ring plane crossings and the DA counter measurements. The DA dust impact rates are compared with the DA boresight configuration around all ring plane crossings between June 2004 and July 2005. Dust impacts were registered at altitudes as high as 100 000 km above the ring plane at distances from Saturn between 4 and 10 Saturn radii. In those regions the dust density of particles bigger than 0.5 can reach values of 0.001m-3. KW - Cassini KW - dust KW - CDA KW - E-ring KW - water ice Y1 - 2006 U6 - https://doi.org/10.1016/j.pss.2006.05.021 SN - 0032-0633 VL - 54 IS - 9-10 SP - 967 EP - 987 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Fischer, Tomáš A1 - Hrubcova, Pavla A1 - Dahm, Torsten A1 - Woith, Heiko A1 - Vylita, Tomáš A1 - Ohrnberger, Matthias A1 - Vlček, Josef A1 - Horalek, Josef A1 - Dedecek, Petr A1 - Zimmer, Martin A1 - Lipus, Martin P. A1 - Pierdominici, Simona A1 - Kallmeyer, Jens A1 - Krüger, Frank A1 - Hannemann, Katrin A1 - Korn, Michael A1 - Kaempf, Horst A1 - Reinsch, Thomas A1 - Klicpera, Jakub A1 - Vollmer, Daniel A1 - Daskalopoulou, Kyriaki T1 - ICDP drilling of the Eger Rift observatory BT - magmatic fluids driving the earthquake swarms and deep biosphere JF - Scientific drilling : reports on deep earth sampling and monitoring N2 - The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia–Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Nový Kostel seismogenic zone, borehole F3 in the Hartoušov mofette field and borehole S4 in the newly discovered Bažina maar near Libá. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartoušov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity. Y1 - 2022 U6 - https://doi.org/10.5194/sd-31-31-2022 SN - 1816-8957 SN - 1816-3459 VL - 31 SP - 31 EP - 49 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rößler, Dirk A1 - Rumpker, Georg A1 - Krüger, Frank T1 - Ambiguous moment tensors and radiation patterns in anisotropic media with applications to the modeling of earthquake mechanisms in W-Bohemia N2 - Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure- shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along- path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components. The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion Y1 - 2004 SN - 0039-3169 ER - TY - JOUR A1 - Weber, Michael H. A1 - Wicks, Chuck A1 - Krüger, Frank A1 - Jahnke, Gunnar A1 - Baumann, M. T1 - Reply to comment on "Asymmetric radiation of seismic waves from an atoll : Nuclear tests in French Polynesia" by A. Douglas Y1 - 2000 ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten T1 - Higher degree moment inversin using far-field broad-band recordings : theory and evaluation of the method with application to the 1994 Bolivia deep earthauke Y1 - 1999 ER - TY - JOUR A1 - Brechner, Stefan A1 - Klinge, Klaus A1 - Krüger, Frank A1 - Plenefisch, Thomas T1 - Backazimuthal variations of splitting parameters of teleseismic SKS phases observed at the broadband stations in Germany Y1 - 1998 ER - TY - JOUR A1 - Weber, Michael H. A1 - Wicks, Chuck A1 - Krüger, Frank A1 - Jahnke, Gunnar A1 - Schlittenhardt, Jörg T1 - Asymmetric radiation of seismic waves from an atoll : nuclear tests in French Polynesia Y1 - 1998 ER - TY - JOUR A1 - Krüger, Frank A1 - Grosser, H. A1 - Baumbach, M. A1 - Berckhemer, Hans T1 - The Erzincan (Turkey) earthquake (Ms 6.8) of March 13, 1992 and its aftershock sequence Y1 - 1998 ER - TY - JOUR A1 - Freybourger, Marion A1 - Krüger, Frank A1 - Achauer, Ulrich T1 - A 22 degree long seismic profile for the study of the top D" Y1 - 1999 ER - TY - JOUR A1 - Friedrich, Andree A1 - Krüger, Frank A1 - Klinge, Klaus T1 - Ocean generated microseismic noise located with the Graefenberg array Y1 - 1998 ER - TY - JOUR A1 - Knapmeyer-Endrun, Brigitte A1 - Krüger, Frank A1 - Legendre, C. P. A1 - Geissler, Wolfram H. T1 - Tracing the influence of the trans-european suture zone into the mantle transition zone JF - Earth & planetary science letters N2 - Cratons with their thick lithospheric roots can influence the thermal structure, and thus the convective flow, in the surrounding mantle. As mantle temperatures are hard to measure directly, depth variations in the mantle transition zone (MTZ) discontinuities are often employed as a proxy. Here, we use a large new data set of P-receiver functions to map the 410 km and 660 km discontinuities beneath the western edge of the East European Craton and adjacent Phanerozoic Europe across the most fundamental lithospheric boundary in Europe, the Trans-European Suture Zone (TESZ). We observe significantly shorter travel times for conversions from both MTZ discontinuities within the craton, caused by the high velocities of the cratonic root. By contrast, the differential travel time across the MTZ is normal to only slightly raised. This implies that any insulating effect of the cratonic keel does not reach the MTZ. In contrast to earlier observations in Siberia, we do not find any trace of a discontinuity at 520 km depth, which indicates a rather dry MTZ beneath the western edge of the craton. Within most of covered Phanerozoic Europe, the MTZ differential travel time is remarkably uniform and in agreement with standard Earth models. No widespread thermal effects of the various episodes of Caledonian and Variscan subduction that took place during the amalgamation of the continent remain. Only more recent tectonic events, related to Alpine subduction and Quarternary volcanism in the Eifel area, can be traced. While the East European craton shows no distinct imprint into the MTZ, we discover the signature of the TESZ in the MTZ in the form of a linear region of about 350 km width with a 1.5 s increase in differential travel time, which could either be caused by high water content or decreased temperature. Taking into account results of recent S-wave tomographies, raised water content in the MTZ cannot be the main cause for this observation. Accordingly, we explain the increase, equivalent to a 15 km thicker MTZ, by a temperature decrease of about 80 K. We discuss two alternative models for this temperature reduction, either a remnant of subduction or an indication of downwelling due to small-scale, edge-driven convection caused by the contrast in lithospheric thickness across the TESZ. Any subducted lithosphere found in the MTZ at this location is unlikely to be related to Variscan subduction along the TESZ, though, as Eurasia has moved significantly northward since the Variscan orogeny. KW - mantle transition zone KW - Trans-European Suture Zone KW - East European Craton KW - edge-driven convection KW - receiver functions Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2012.12.028 SN - 0012-821X SN - 1385-013X VL - 363 SP - 73 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kinscher, Jannes A1 - Krüger, Frank A1 - Woith, H. A1 - Lühr, B. G. A1 - Hintersberger, E. A1 - Irmak, T. Serkan A1 - Baris, S. T1 - Seismotectonics of the Armutlu peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, Izmit M-W 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary stresses as transtensional faulting is consistent with the southwest directed far field deformation of the Anatolian plate. (C) 2013 Elsevier B.V. All rights reserved. KW - Seismotectonics KW - Moment tensor inversion KW - Brittle fault analysis KW - Morphotectonics KW - North Anatolian Fault Zone (NAFZ) KW - Marmara Sea Y1 - 2013 U6 - https://doi.org/10.1016/j.tecto.2013.07.016 SN - 0040-1951 SN - 1879-3266 VL - 608 IS - 46 SP - 980 EP - 995 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kieling, Katrin A1 - Rößler, Dirk A1 - Krüger, Frank T1 - Receiver function study in northern Sumatra and the Malaysian peninsula JF - Journal of seismology N2 - In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V (S)) near the surface in the range of 3.4-3.6 km s (-aEuro parts per thousand 1) attributed to crystalline rocks and 3.6-4.0 km s (-aEuro parts per thousand 1) in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30-34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V (S) of 2.6-2.9 km s (-aEuro parts per thousand 1) indicate sediment layers. High V (S) of 4.2 km s (-aEuro parts per thousand 1) are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V (S) between 10 and 20 km depth. Within the subducting slab V (S) a parts per thousand aEuro parts per thousand 4.7 km s (-aEuro parts per thousand 1). At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20A degrees +/- 8A degrees in approximately N 60A degrees E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found. KW - Receiver functions KW - Absolute shear-wave velocity KW - Sumatra KW - Subduction zone structure Y1 - 2011 U6 - https://doi.org/10.1007/s10950-010-9222-7 SN - 1383-4649 VL - 15 IS - 2 SP - 235 EP - 259 PB - Springer CY - Dordrecht ER - TY - BOOK A1 - Krüger, Frank T1 - Seismologische Arrays in der teleseismischen Struktur und Herdprozessabbildung : Antrittsvorlesung 2009-06-18 N2 - Frank Krüger, der seit 1997 am Institut für Geowissenschaften in der Seismologie tätig ist, wurde eine außerplanmäßige Professur für Geophysik übertragen. Seine Vorlesung zum Thema "Seismologische Arrays in der teleseismischen Struktur- und Herdprozessabbildung" gibt einen Überblick über den Einsatz arrayseismologischer Verfahren in der Erdstrukturerkundung und der detaillierten Abbildung von Erdbebenherden. Dichte Netzwerke von seismologischen Messstationen ermöglichen die Anwendung spezieller hochauflösender Auswertungsverfahren. Diese wurden zunächst im Kontext der Spionage entwickelt, finden heutzutage aber breite Anwendung in vielen seismologischen Forschungsbereichen, von der Erkundung der Struktur an der Grenze zum Erdkern, über Zusammenhänge von seismischem Wellenfeld und Wetterphänomenen bis hin zum Einsatz bei Tsunamifrühwarnsystemen zur schnellen Analyse sehr großer Erdbebenherde. Y1 - 2009 UR - http://info.ub.uni-potsdam.de/multimedia/show_projekt.php?projekt_id=37 PB - Univ.-Bibl. CY - Potsdam ER - TY - JOUR A1 - Gassner, Alexandra A1 - Thomas, Christine A1 - Krüger, Frank A1 - Weber, Michael H. T1 - Probing the core-mantle boundary beneath Europe and Western Eurasia: A detailed study using PcP JF - Physics of the earth and planetary interiors N2 - We use PcP (the core reflected P phase) recordings of deep earthquakes and nuclear explosions from the Grafenberg (Germany) and NORSAR (Norway) arrays to investigate the core-mantle boundary region beneath Europe and western Eurasia. We find evidence for a previously unknown ultra-low velocity zone 600 km south-east of Moscow, located at the edge of a middle-size low shear- velocity region imaged in seismic tomography that is located beneath the Volga river region. The observed amplitude variations of PcP can be modelled by velocity reductions of P and S-waves of -5% and -15%, respectively, with a density increase of +15%. Travel time delays of pre-and postcursors are indicating a thickness of about 13 km for this ultra-low velocity region (ULVZ). However, our modelling also reveals highly ambiguous amplitude variations of PcP and a reflection off the top of the anomaly for various ULVZs and topography models. Accordingly, large velocity contrasts of up to -10% in V-P and -20% in Vs cannot be excluded. In general, the whole Volga river region shows a complex pattern of PcP amplitudes caused most likely by CMB undulations. Further PcP probes beneath Paris, Kiev and northern Italy indicate likely normal CMB conditions, whereas the samples below Finland and the Hungary-Slovakia border yield strongly amplified PcP signals suggesting strong CMB topography effects. We evaluate the amplitude behaviour of PcP as a function of distance and several ULVZ models using the 1D reflectivity and the 2D Gauss beam method. The influence of the velocity and density perturbations is analysed as well as the anomaly thickness, the dominant period of the source wavelet and interface topographies. Strong variation of the PcP amplitude are obtained as a function of distance and of the impedance contrast. We also consider two types of topographies: undulations atop the CMB in the presence of flat ULVZs and vice versa. Where a broad range of CMB topography dimensions lead to large PcP amplitude variations, only large ULVZ undulations generate significant amplitude scattering. Consequently, this indicates that topography effects of anomalies may mask the true medium parameters as well as the ULVZ thickness. Moreover, there might be a possibility of misinterpreting the precursor as PcP, in particular for thin ULVZs. (C) 2015 Elsevier B.V. All rights reserved. KW - Core-mantle boundary KW - Ultra-low velocity zones KW - Seismology KW - Amplitude and waveform analysis of PcP KW - Earthquakes KW - Nuclear explosions Y1 - 2015 U6 - https://doi.org/10.1016/j.pepi.2015.06.007 SN - 0031-9201 SN - 1872-7395 VL - 246 SP - 9 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Jose Sanchez-Sesma, Francisco A1 - Camillo Molina-Villegas, Juan A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Full microtremor H/V(z,f) inversion for shallow subsurface characterization JF - Geophysical journal international N2 - The H/V spectral ratio has emerged as a single station method within the seismic ambient noise analysis field by its capability to quickly estimate the frequency of resonance at a site and through inversion the average profile information. Although it is easy to compute from experimental data, its counter theoretical part is not obvious when building a forward model which can help in reconstructing the derived H/V spectrum. This has led to the simplified assumption that the noise wavefield is mainly composed of Rayleigh waves and the derived H/V often used without further correction. Furthermore, only the right (and left) flank around the H/V peak frequency is considered in the inversion for the subsurface 1-D shear wave velocity profile. A new theoretical approach for the interpretation of the H/V spectral ratio has been presented by Sanchez-Sesmaet al. In this paper, the fundamental idea behind their theory is presented as it applies to receivers at depth. A smooth H/V(z, f) spectral curve on a broad frequency range is obtained by considering a fine integration step which is in turn time consuming. We show that for practical purposes and in the context of inversion, this can be considerably optimized by using a coarse integration step combined with the smoothing of the corresponding directional energy density (DED) spectrum. Further analysis shows that the obtained H/V(z, f) spectrum computed by the mean of the imaginary part of Green's function method could also be recovered using the reflectivity method for a medium well illuminated by seismic sources. Inversion of synthetic H/V(z, f) spectral curve is performed for a single layer over a half space. The striking results allow to potentially use the new theory as a forward computation of the H/V(z, f) to fully invert the experimental H/V spectral ratio at the corresponding depth for the shear velocity profile (Vs) and additionally the compressional velocity profile (Vp) using receivers both at the surface and in depth. We use seismic ambient noise data in the frequency range of 0.2-50 Hz recorded at two selected sites in Germany where borehole information is also available. The obtained 1-D Vs and Vp profiles are correlated with geological log information. Results from shallow geophysical experiment are also used for comparison. KW - Inverse theory KW - Interferometry KW - Site effects Y1 - 2015 U6 - https://doi.org/10.1093/gji/ggv132 SN - 0956-540X SN - 1365-246X VL - 202 IS - 1 SP - 298 EP - 312 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Dahm, Torsten A1 - Cesca, Simone A1 - Hainzl, Sebastian A1 - Braun, Thomas A1 - Krüger, Frank T1 - Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters JF - Journal of geophysical research : Solid earth N2 - Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the M-w 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the M-w 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Sohlingen gas field; and (3) the M-w 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly human induced, not even human triggered, and a third case in between both extremes. KW - induced seismicity KW - probabilistic discrimination KW - hydrocarbon field KW - triggered earthquake KW - seismic hazard KW - earthquake Y1 - 2015 U6 - https://doi.org/10.1002/2014JB011778 SN - 2169-9313 SN - 2169-9356 VL - 120 IS - 4 SP - 2491 EP - 2509 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kulikova, Galina A1 - Krüger, Frank T1 - Source process of the 1911 M8.0 Chon-Kemin earthquake: investigation results by analogue seismic records JF - Geophysical journal international N2 - Several destructive earthquakes have occurred in Tien-Shan region at the beginning of 20th century. However, the detailed seismological characteristics, especially source parameters of those earthquakes are still poorly investigated. The Chon-Kemin earthquake is the strongest instrumentally recorded earthquake in the Tien-Shan region. This earthquake has produced an approximately 200 km long system of surface ruptures along Kemin-Chilik fault zone and killed about similar to 400 people. Several studies presented the different information on the earthquake epicentre location and magnitude, and two different focal mechanisms were also published. The reason for the limited knowledge of the source parameters for the Chon-Kemin earthquake is the complexity of old analogue records processing, digitization and analysis. In this study the data from 23 seismic stations worldwide were collected and digitized. The earthquake epicentre was relocated to 42.996NA degrees and 77.367EA degrees, the hypocentre depth is estimated between 10 and 20 km. The magnitude was recalculated to m(B) 8.05, M-s 7.94 and M-w 8.02. The focal mechanism, determined from amplitude ratios comparison of the observed and synthetic seismograms, was: str = 264A degrees, dip = 52A degrees, rake = 98A degrees. The apparent source time duration was between similar to 45 and similar to 70 s, the maximum slip occurred 25 s after the beginning of the rupture. Two subevents were clearly detected from the waveforms with the scalar moment ratio between them of about 1/3, the third subevent was also detected with less certainty. Taking into account surface rupture information, the fault geometry model with three patches was proposed. Based on scaling relations we conclude that the total rupture length was between similar to 260 and 300 km and a maximum rupture width could reach similar to 70 km. KW - Earthquake source observations KW - Seismicity and tectonics KW - Body waves KW - Theoretical seismology Y1 - 2015 U6 - https://doi.org/10.1093/gji/ggv091 SN - 0956-540X SN - 1365-246X VL - 201 IS - 3 SP - 1891 EP - 1911 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hannemann, Katrin A1 - Krüger, Frank A1 - Dahm, Torsten T1 - Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise JF - Geophysical journal international N2 - Marine seismology usually relies on temporary deployments of stand alone seismic ocean bottom stations (OBS), which are initialized and synchronized on ship before deployment and re-synchronized and stopped on ship after recovery several months later. In between, the recorder clocks may drift and float at unknown rates. If the clock drifts are large or not linear and cannot be corrected for, seismological applications will be limited to methods not requiring precise common timing. Therefore, for example, array seismological methods, which need very accurate timing between individual stations, would not be applicable for such deployments. We use an OBS test-array of 12 stations and 75 km aperture, deployed for 10 months in the deep sea (4.5-5.5 km) of the mid-eastern Atlantic. The experiment was designed to analyse the potential of broad-band array seismology at the seafloor. After recovery, we identified some stations which either show unusual large clock drifts and/or static time offsets by having a large difference between the internal clock and the GPS-signal (skew). We test the approach of ambient noise cross-correlation to synchronize clocks of a deep water OBS array with km-scale interstation distances. We show that small drift rates and static time offsets can be resolved on vertical components with a standard technique. Larger clock drifts (several seconds per day) can only be accurately recovered if time windows of one input trace are shifted according to the expected drift between a station pair before the cross-correlation. We validate that the drifts extracted from the seismometer data are linear to first order. The same is valid for most of the hydrophones. Moreover, we were able to determine the clock drift at a station where no skew could be measured. Furthermore, we find that instable apparent drift rates at some hydrophones, which are uncorrelated to the seismometer drift recorded at the same digitizer, indicate a malfunction of the hydrophone. KW - Time-series analysis KW - Interferometry KW - Broad-band seismometers Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggt434 SN - 0956-540X SN - 1365-246X VL - 196 IS - 2 SP - 1034 EP - 1042 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Matos, Catarina A1 - Silveira, Graca A1 - Matias, Luis A1 - Caldeira, Rita A1 - Ribeiro, M. Luisa A1 - Dias, Nuno A. A1 - Krüger, Frank A1 - Bento dos Santos, Telmo T1 - Upper crustal structure of Madeira Island revealed from ambient noise tomography JF - Journal of volcanology and geothermal research N2 - We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 20 tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution. (C) 2015 Elsevier B.V. All rights reserved. KW - Madeira island KW - Volcanic rift zone KW - Crustal structure KW - Ambient noise tomography Y1 - 2015 U6 - https://doi.org/10.1016/j.jvolgeores.2015.03.017 SN - 0377-0273 SN - 1872-6097 VL - 298 SP - 136 EP - 145 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Weber, Michael H. A1 - Wicks, Charles A1 - Le Stunff, Yves A1 - Romanowicz, Barbara A1 - Krüger, Frank T1 - Seismic evidence for a steeply dipping reflector-stagnant slab in the mantle transition zone JF - Geophysical journal international N2 - Studies of seismic tomography have been highly successful at imaging the deep structure of subduction zones. In a study complementary to these tomographic studies, we use array seismology and reflected waves to image a stagnant slab in the mantle transition zone. Using P and S (SH) waves we find a steeply dipping reflector centred at ca. 400 km depth and ca. 550 km west of the present Mariana subduction zone (at 20N, 140E). The discovery of this anomaly in tomography and independently in array seismology (this paper) helps in understanding the evolution of the Mariana margin. The reflector/stagnant slab may be the remains of the hypothetical North New Guinea Plate, which was theorized to have subducted ca. 50 Ma. KW - Mantle processes KW - Composition of the mantle KW - Seismic tomography KW - Wave scattering and diffraction KW - Subduction zone processes KW - Volcanic arc processes KW - Continental margins: convergent KW - Pacific Ocean Y1 - 2015 U6 - https://doi.org/10.1093/gji/ggu438 SN - 0956-540X SN - 1365-246X VL - 200 IS - 2 SP - 1235 EP - 1251 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Steinberg, Andreas A1 - Sudhaus, Henriette A1 - Heimann, Sebastian A1 - Krüger, Frank T1 - Sensitivity of InSAR and teleseismic observations to earthquake rupture segmentation JF - Geophysical journal international N2 - Earthquakes often rupture across more than one fault segment. If such rupture segmentation occurs on a significant scale, a simple point-source or one-fault model may not represent the rupture process well. As a consequence earthquake characteristics inferred, based on one-source assumptions, may become systematically wrong. This might have effects on follow-up analyses, for example regional stress field inversions and seismic hazard assessments. While rupture segmentation is evident for most M-w > 7 earthquakes, also smaller ones with 5.5 < M-w < 7 can be segmented. We investigate the sensitivity of globally available data sets to rupture segmentation and their resolution to reliably estimate the mechanisms in presence of segmentation. We focus on the sensitivity of InSAR (Interferometric Synthetic Aperture Radar) data in the static near-field and seismic waveforms in the far-field of the rupture and carry out non-linear and Bayesian optimizations of single-source and two-sources kinematic models (double-couple point sources and finite, rectangular sources) using InSAR and teleseismic waveforms separately. Our case studies comprises of four M-w 6-7 earthquakes: the 2009 L'Aquila and 2016 Amatrice (Italy) and the 2005 and 2008 Zhongba (Tibet) earthquakes. We contrast the data misfits of different source complexity by using the Akaike informational criterion (AIC). We find that the AIC method is well suited for data-driven inferences on significant rupture segmentation for the given data sets. This is based on our observation that an AIC-stated significant improvement of data fit for two-segment models over one-segment models correlates with significantly different mechanisms of the two source segments and their average compared to the single-segment mechanism. We attribute these modelled differences to a sufficient sensitivity of the data to resolve rupture segmentation. Our results show that near-field data are generally more sensitive to rupture segmentation of shallow earthquakes than far-field data but that also teleseismic data can resolve rupture segmentation in the studied magnitude range. We further conclude that a significant difference in the modelled source mechanisms for different segmentations shows that an appropriate choice of model segmentation matters for a robust estimation of source mechanisms. It reduces systematic biases and trade-off and thereby improves the knowledge on the rupture. Our study presents a strategy and method to detect significant rupture segmentation such that an appropriate model complexity can be used in the source mechanism inference. A similar, systematic investigation of earthquakes in the range of M-w 5.5-7 could provide important hazard-relevant statistics on rupture segmentation. In these cases single-source models introduce a systematic bias. Consideration of rupture segmentation therefore matters for a robust estimation of source mechanisms of the studied earthquakes. KW - radar interferometry KW - waveform inversion KW - earthquake source observations Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa351 SN - 0956-540X SN - 1365-246X VL - 223 IS - 2 SP - 875 EP - 907 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hannemann, Katrin A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Lange, Dietrich T1 - Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor JF - Geophysical journal international N2 - Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s(-1). The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s(-1). We find a slight increase of the total crustal thickness from similar to 5 to similar to 8 km towards the South in the direction of a major plate boundary, the Gloria Fault. The observed crustal thickening can be related with the known dominant compression in the vicinity of the fault. Furthermore, the resulting mantle S-wave velocities decrease from values around 5.5 to 4.5 km s(-1) towards the fault. This decrease is probably caused by serpentinization and indicates that the oceanic transform fault affects a broad region in the uppermost mantle. Conclusively, the presented method is useful for the estimation of the local S-wave velocity structure beneath ocean bottom seismic stations. It is easy to implement and consists of two main steps: (1) measurement of apparent P-wave incidence angles in different period ranges for real and synthetic data, and (2) comparison of the determined apparent S-wave velocities for real and synthetic data to estimate S-wave velocity-depth models. KW - Time-series analysis KW - Body waves KW - Theoretical seismology KW - Oceanic transform and fracture zone processes Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw342 SN - 0956-540X SN - 1365-246X VL - 207 SP - 1796 EP - 1817 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays JF - Journal of applied geophysics N2 - We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Lobnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Lobnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (similar to 0.6-35 Hz at Horstwalde and similar to 1.5-25 Hz at Lobnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the dispersion curves. Within the uncertainty given by the apparent spread of forward models we find that besides a well defined sediment velocity range also a reasonable minimum estimate of bedrock depth and bedrock velocity can be achieved. The Vs estimate for the best model in Horstwalde ranges from similar to 190 m/s at the surface up to similar to 390 m/s in the bottom of the soft sediment column. The bedrock starts earliest around 200 m depth and bedrock velocities are higher than 1000 m/s. In Lobnitz, we observe slightly lower velocities for the sediments (similar to 165-375 m/s for the best model) and a minimum thickness of 75 m. (C) 2016 Elsevier B.V. All rights reserved. KW - Active seismic KW - Passive seismic KW - Virtual active seismic KW - Dispersion curves KW - Inversion KW - V-s profiles Y1 - 2016 U6 - https://doi.org/10.1016/j.jappgeo.2016.03.034 SN - 0926-9851 SN - 1879-1859 VL - 130 SP - 37 EP - 52 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Händel, Annabel A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Extracting near-surface Q(L) between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece JF - Geophysical journal international N2 - Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (> 1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings < 2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C-3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C-3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C-3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors Q(L). The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient gamma and Q(L) can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area. KW - Interferometry KW - Coda waves KW - Seismic attenuation Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw295 SN - 0956-540X SN - 1365-246X VL - 207 SP - 655 EP - 666 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Sánchez-Sesma, Francisco José T1 - Combining surface-wave phase-velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization JF - Interpretation : a journal of subsurface characterization N2 - We compute seismic velocity profiles by a combined inversion of surface-wave phase-velocity dispersion curves together with the full spectrum of the microtremor horizontal-to-vertical (H/V) spectral ratio at two sediment-covered sites in Germany. The sediment deposits are approximately 100 m thick at the first test site and approximately 400 m thick at the second test site. We have used an extended physical model based on the diffuse wavefield assumption for the interpretation of the observed microtremor H/V spectral ratio. The extension includes the interpretation of the microtremor H/V spectral ratio observed at depth (in boreholes). This full-wavefield approach accounts for the energy contribution from the body and surface waves, and thus it allows for inverting the properties of the shallow subsurface. We have obtained the multimode phase velocity dispersion curves from an independent study, and a description of the extracted branches and their interpretation was developed. The inversion results indicate that the combined approach using seismic ambient noise and actively generated surface-wave data will improve the accuracy of the reconstructed near-surface velocity model, a key step in microzonation, geotechnical engineering, seismic statics corrections, and reservoir imaging. Y1 - 2016 U6 - https://doi.org/10.1190/INT-2016-0021.1 SN - 2324-8858 SN - 2324-8866 VL - 4 SP - SQ41 EP - SQ49 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Kulikova, Galina A1 - Schurr, Bernd A1 - Krüger, Frank A1 - Brzoska, Elisabeth A1 - Heimann, Sebastian T1 - Source parameters of the Sarez-Pamir earthquake of 1911 February 18 JF - Geophysical journal international N2 - The Ms ∼ 7.7 Sarez-Pamir earthquake of 1911 February 18 is the largest instrumentally recorded earthquake in the Pamir region. It triggered one of the largest landslides of the past century, building a giant natural dam and forming Lake Sarez. As for many strong earthquakes from that time, information about source parameters of the Sarez-Pamir earthquake is limited due to the sparse observations. Here, we present the analysis of analogue seismic records of the Sarez-Pamir earthquake. We have collected, scanned and digitized 26 seismic records from 13 stations worldwide to relocate the epicentre and determine the event's depth (∼26 km) and magnitude (mB7.3 and Ms7.7). The unusually good quality of the digitized waveforms allowed their modelling, revealing an NE-striking sinistral strike-slip focal mechanism in accordance with regional tectonics. The shallow depth and magnitude (Mw7.3) of the earthquake were confirmed. Additionally, we investigated the possible contribution of the landslide to the waveforms and present an alternative source model assuming the landslide and earthquake occurred in close sequence. KW - Earthquake source observations KW - Seismicity and tectonics KW - Body waves KW - Theoretical seismology Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw069 SN - 0956-540X SN - 1365-246X VL - 205 SP - 1086 EP - 1098 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lange, Dietrich A1 - Bedford, J. R. A1 - Moreno, M. A1 - Tilmann, F. A1 - Báez, Juan Carlos A1 - Bevis, M. A1 - Krüger, Frank T1 - Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011 JF - Geophysical journal international N2 - We focus on the relation between seismic and total postseismic afterslip following the Maule M-w 8.8 earthquake on 2010 February 27 in central Chile. First, we calculate the cumulative slip released by aftershock seismicity. We do this by summing up the aftershock regions and slip estimated from scaling relations. Comparing the cumulative seismic slip with afterslip modelswe showthat seismic slip of individual aftershocks exceeds locally the inverted afterslip model from geodetic constraints. As the afterslip model implicitly contains the displacements from the aftershocks, this reflects the tendency of afterslip models to smear out the actual slip pattern. However, it also suggests that locally slip for a number of the larger aftershocks exceeds the aseismic slip in spite of the fact that the total equivalent moment of the afterslip exceeds the cumulative moment of aftershocks by a large factor. This effect, seen weakly for the Maule 2010 and also for the Tohoku 2011 earthquake, can be explained by taking into account the uncertainties of the seismicity and afterslip models. In spite of uncertainties, the hypocentral region of the Nias 2005 earthquake is suggested to release a large fraction of moment almost purely seismically. Therefore, these aftershocks are not driven solely by the afterslip but instead their slip areas have probably been stressed by interseismic loading and the mainshock rupture. In a second step, we divide the megathrust of the Maule 2010 rupture into discrete cells and count the number of aftershocks that occur within 50 km of the centre of each cell as a function of time. We then compare this number to a time-dependent afterslip model by defining the 'afterslip to aftershock ratio' (ASAR) for each cell as the slope of the best fitting line when the afterslip at time t is plotted against aftershock count. Although we find a linear relation between afterslip and aftershocks for most cells, there is significant variability in ASAR in both the downdip and along-strike directions of the megathrust. We compare the spatial distribution of ASAR with the spatial distribution of seismic coupling, coseismic slip and Bouguer gravity anomaly, and in each case we find no significant correlation. KW - Creep and deformation KW - Earthquake dynamics KW - Seismicity and tectonics KW - Continental margins: convergent Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu292 SN - 0956-540X SN - 1365-246X VL - 199 IS - 2 SP - 784 EP - 799 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Knapmeyer-Endrun, Brigitte A1 - Krüger, Frank T1 - Moho depth across the Trans-European Suture Zone from P- and S-receiver functions JF - Geophysical journal international N2 - The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P-and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal vP/vS ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30 km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal v(P)/v(S) ratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. KW - Body waves KW - Cratons KW - Crustal structure KW - Europe Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu035 SN - 0956-540X SN - 1365-246X VL - 197 IS - 2 SP - 1048 EP - 1075 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Czuba, Wojciech A1 - Grad, Marek A1 - Mjelde, Rolf A1 - Guterch, Aleksander A1 - Libak, Audun A1 - Krüger, Frank A1 - Murai, Yoshio A1 - Schweitzer, Johannes T1 - Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea JF - Geophysical journal international N2 - P>A 410 km long Ocean Bottom Seismometer profile spanning from the Bear Island, Barents Sea to oceanic crust formed along the Mohns Ridge has been modelled by use of ray-tracing with regard to observed P-waves. The northeastern part of the model represents typical continental crust, thinned from ca. 30 km thickness beneath the Bear Island to ca. 13 km within the Continent-Ocean-Transition. Between the Hornsund FZ and the Kn circle divide legga Fault, a 3-4 km thick sedimentary basin, dominantly of Permian/Carboniferous age, is modelled beneath the ca. 1.5 km thick layer of volcanics (Vestbakken Volcanic Province). The P-wave velocity in the 3-4 km thick lowermost continental crust is significantly higher than normal (ca. 7.5 km s-1). We interpret this layer as a mixture of mafic intrusions and continental crystalline blocks, dominantly related to the Paleocene-Early Eocene rifting event. The crystalline portion of the crust within the south-western part of the COT consists of a ca. 30 km wide and ca. 6 km thick high-velocity (7.3 km s-1) body. We interpret the body as a ridge of serpentinized peridotites. The magmatic portion of the ocean crust accreted along the Knipovich Ridge from continental break-up at ca. 35 Ma until ca. 20 Ma is 3-5 km thicker than normal. We interpret the increased magmatism as a passive response to the bending of this southernmost part of the Knipovich Ridge. The thickness of the magmatic portion of the crust formed along the Mohns Ridge at ca. 20 Ma decreases to ca. 3 km, which is normal for ultra slow spreading ridges. KW - Controlled source seismology KW - Dynamics of lithosphere and mantle KW - Crustal structure KW - Atlantic Ocean Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04873.x SN - 0956-540X VL - 184 IS - 2 SP - 541 EP - 554 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Preusse, Franziska A1 - van der Meer, Elke A1 - Deshpande, Gopikrishna A1 - Krüger, Frank A1 - Wartenburger, Isabell T1 - Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning JF - Frontiers in human neuroscienc N2 - Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence. KW - high fluid intelligence KW - geometric analogical reasoning KW - task difficulty KW - functional magnetic resonance imaging KW - parieto-frontal network Y1 - 2011 U6 - https://doi.org/10.3389/fnhum.2011.00022 SN - 1662-5161 VL - 5 IS - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Donner, Stefanie A1 - Krüger, Frank A1 - Roessler, Dirk A1 - Ghods, Abdolreza T1 - Combined Inversion of broadband and short-period waveform data for regional moment tensors: A case study in the Alborz Mountains, Iran JF - Bulletin of the Seismological Society of America N2 - In this study, we suggest a novel approach for the retrieval of regional moment tensors for earthquakes with small to moderate magnitudes. The first modification is the combined inversion of broadband and short-period waveform data. The broadband waveforms are inverted in a frequency range suitable for surface waves, whereas for the short-period data a frequency range suitable for body waves is applied. The second modification is the use of first-motion body-wave polarities to select the most probable solution out of all solutions from inversion. To combine three different criteria for selecting the most probable solution (i.e., residual from inversion, double-couple content of solution, number of nonmatching first-motion body-wave polarities), the L2 norm is applied to the normalized parameters. We chose five earthquakes within the Alborz mountains, Iran, as a case study (3.1 <= M-w <= 4.1). In this area, several factors exacerbate the difficulty of performing inversion for moment tensors, for example, a heterogeneous station network and large azimuthal gaps. We have demonstrated that our approach supplies reliable moment tensors when inversion from broadband data alone fails. In one case, we successfully retrieved a stable solution from short-period waveform data alone. Thus, our approach enables successful determination of seismic moment tensors wherever a sparse network of broadband stations has thus far prevented it. Y1 - 2014 U6 - https://doi.org/10.1785/0120130229 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 3 SP - 1358 EP - 1373 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Alinaghi, Alireza A1 - Kruger, Frank T1 - Seismic array analysis and redetermination of depths of earthquakes in Tien-Shan: implications for strength of the crust and lithosphere JF - Geophysical journal international N2 - We have redetermined focal depths of moderate and major earthquakes with reported lower-crust and upper-mantle depths that have occurred in Tien-Shan, since the availability of broad-band array data. Records of earthquakes at global arrays have been used for identification and modelling of depth phases in order to make accurate estimation of focal depths. Our results show that half of the purportedly deep earthquakes are indeed originating from depths attributable to middle-crust and lower-crust regions. Also one exceptional event in the northern foreland of Tien-Shan in Junggar Basin is located in the upper mantle at the depth of 64 km. Such unusually deep earthquakes for intraplate continental tectonic domain are all located at the margin of Tien-Shan with its adjacent stable blocks and at least some of them have occurred where the brittle behaviour of continental rocks is not highly expected. The reverse mechanisms of all these earthquakes and their proximity to formerly subducting and later colliding and underplating stable blocks and their interactions with overlying Tien-Shan are clues to explain this extremity. KW - Earthquake source observations KW - Seismicity and tectonics KW - Body waves Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu141 SN - 0956-540X SN - 1365-246X VL - 198 IS - 2 SP - 1111 EP - 1129 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Palo, Mauro A1 - Tilmann, Frederik A1 - Krüger, Frank A1 - Ehlert, Lutz A1 - Lange, Dietrich T1 - High-frequency seismic radiation from Maule earthquake (M-w 8.8, 2010 February 27) inferred from high-resolution backprojection analysis JF - Geophysical journal international N2 - We track a bilateral rupture propagation lasting similar to 160 s, with its dominant branch rupturing northeastwards at about 3 kms(-1). The area of maximum energy emission is offset from the maximum coseismic slip but matches the zone where most plate interface aftershocks occur. Along dip, energy is preferentially released from two disconnected interface belts, and a distinct jump from the shallower belt to the deeper one is visible after about 20 s from the onset. However, both belts keep on being active until the end of the rupture. These belts approximately match the position of the interface aftershocks, which are split into two clusters of events at different depths, thus suggesting the existence of a repeated transition from stick-slip to creeping frictional regime. KW - Earthquake source observations KW - Wave propagation KW - Subduction zone processes Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu311 SN - 0956-540X SN - 1365-246X VL - 199 IS - 2 SP - 1058 EP - 1077 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Garcia-Jerez, Antonio A1 - Camilo Molina-Villegas, Juan A1 - Jose Sanchez-Sesma, Francisco A1 - Molkenthin, Christian A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Wang, Rongjiang A1 - Fah, Donat T1 - A generalized theory for full microtremor horizontal-to-vertical [H/V(z,f)] spectral ratio interpretation in offshore and onshore environments JF - Geophysical journal international N2 - Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green’s functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. KW - Numerical modelling KW - Earthquake hazards KW - Seismic interferometry KW - Site effects KW - Theoretical seismology KW - Wave propagation Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz223 SN - 0956-540X SN - 1365-246X VL - 218 IS - 2 SP - 1276 EP - 1297 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hannemann, Katrin A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Lange, Dietrich T1 - Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid-Atlantic by receiver function analysis JF - Journal of geophysical research : Solid earth N2 - Receiver functions (RF) have been used for several decades to study structures beneath seismic stations. Although most available stations are deployed on shore, the number of ocean bottom station (OBS) experiments has increased in recent years. Almost all OBSs have to deal with higher noise levels and a limited deployment time (approximate to 1year), resulting in a small number of usable records of teleseismic earthquakes. Here we use OBSs deployed as midaperture array in the deep ocean (4.5-5.5km water depth) of the eastern mid-Atlantic. We use evaluation criteria for OBS data and beamforming to enhance the quality of the RFs. Although some stations show reverberations caused by sedimentary cover, we are able to identify the Moho signal, indicating a normal thickness (5-8km) of oceanic crust. Observations at single stations with thin sediments (300-400m) indicate that a probable sharp lithosphere-asthenosphere boundary (LAB) might exist at a depth of approximate to 70-80km which is in line with LAB depth estimates for similar lithospheric ages in the Pacific. The mantle discontinuities at approximate to 410km and approximate to 660km are clearly identifiable. Their delay times are in agreement with PREM. Overall the usage of beam-formed earthquake recordings for OBS RF analysis is an excellent way to increase the signal quality and the number of usable events. KW - receiver function KW - oceanic lithosphere and mantle KW - ocean bottom seismology Y1 - 2017 U6 - https://doi.org/10.1002/2016JB013582 SN - 2169-9313 SN - 2169-9356 VL - 122 SP - 7927 EP - 7950 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Karamzadeh Toularoud, Nasim A1 - Heimann, Sebastian A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Application based seismological array design by seismicity scenario modelling JF - Geophysical journal international N2 - The design of an array configuration is an important task in array seismology during experiment planning. Often the array response function (ARF), which depends on the relative position of array stations and frequency content of the incoming signals, is used as the array design criterion. In practice, additional constraints and parameters have to be taken into account, for example, land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. In this study, a flexible array design framework is introduced that implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints. We suggest to use synthetic array beamforming as an array design criterion instead of the ARF. The objective function of the optimization scheme is defined according to the monitoring goals, and may consist of a number of subfunctions. The array design framework is exemplified by designing a seven-station small-scale array to monitor earthquake swarm activity in Northwest Bohemia/Vogtland in central Europe. Two subfunctions are introduced to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space and the other to reduce the event’s mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the subfunctions into one single scalar objective function to use in the optimization process. KW - Array Seismology KW - Array design KW - Seismicity modelling Y1 - 2018 SN - 0956-540X SN - 1365-246X VL - 216 IS - 3 SP - 1711 EP - 1727 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Haendel, Annabel A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Frequency-dependent quality factors from the deconvolution of ambient noise recordings in a borehole in West Bohemia/Vogtland JF - Geophysical journal international N2 - The correct estimation of site-specific attenuation is crucial for the assessment of seismic hazard. Downhole instruments provide in this context valuable information to constrain attenuation directly from data. In this study, we apply an interferometric approach to this problem by deconvolving seismic motions recorded at depth with those recorded at the surface. In doing so, incident and surface-reflected waves can be separated. We apply this technique not only to earthquake data but also to recordings of ambient vibrations. We compute the transfer function between incident and surface-reflected waves in order to infer frequency-dependent quality factors for S waves. The method is applied to a 87m deep borehole sensor and a colocated surface instrument situated at a hard-rock site in West Bohemia/Vogtland, Germany. We show that the described method provides comparable attenuation estimates using either earthquake data or ambient noise for frequencies between 5 and 15 Hz. Moreover, a single hour of noise recordings seems to be sufficient to yield stable deconvolution traces and quality factors, thus, offering a fast and easy way to derive attenuation estimates from borehole recordings even in low- to mid-seismicity regions. KW - Downholemethods KW - Seismic attenuation KW - Seismic interferometry KW - Seismic noise Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy422 SN - 0956-540X SN - 1365-246X VL - 216 IS - 1 SP - 251 EP - 260 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krüger, Frank A1 - Kulikova, Galina A1 - Landgraf, Angela T1 - Magnitudes for the historical 1885 (Belovodskoe), the 1887 (Verny) and the 1889 (Chilik) earthquakes in Central Asia determined from magnetogram recordings JF - Geophysical journal international N2 - Six large magnitude earthquakes in Central Asia which occurred at the end of the 19th century were recorded on early magnetographs in Great Britain. Scalar seismic moment estimates of the 1911 Chon-Kemin, the 1902 Atushi and the 1907 Karatag earthquakes in Central Asia were recently determined by historical seismogram modelling. For those events, we find agreement between moment magnitudes estimated from seismograms and from magnetograms. This supports the assumption of linear scaling of magnetogram amplitudes as function of M-0, which we then use to estimate the moment magnitudes for earlier large-magnitude events, that is, the 1885 Belovodskoe, 1887 Verny and 1889 Chilik earthquakes. The magnetometer data imply that the Chilik earthquake had M(W)7.9, slightly smaller than the Chon-Kemin event with M(W)8.0. The Verny earthquake, however, for which we estimate M(W)7.7, is likely larger than listed in catalogues (M7.3). Similarly, we find a larger magnitude M(W)7.6 (instead of the previous M6.9) for the Belovodskoe earthquake, but this remains uncertain due to measurement imprecision. KW - Earthquake source observations KW - Seismicity and tectonics KW - Intraplate processes Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy377 SN - 0956-540X SN - 1365-246X VL - 215 IS - 3 SP - 1824 EP - 1840 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kastle, Emanuel D. A1 - Weber, Michael A1 - Krüger, Frank T1 - Complex Deep Structure of the African Low-Velocity Zone JF - Bulletin of the Seismological Society of America N2 - We use recently deployed seismological arrays in Africa to sample a 2D cross section through the mantle down to the core-mantle boundary (CMB). By making use of travel-time residuals of S, ScS, and SKS phases, a new shear-velocity model of the African low-velocity zone (ALVZ) is derived. Our model suggests between 1.2% shear-velocity reduction at the top and 5% at the bottom with respect to 1D reference models. The average reduction over the whole low-velocity zone (LVZ) amounts to 2% in the presented model and is therefore about twice as strong as values found in global tomographic models. The top of the LVZ reaches up to 1200-km depth, and its lateral extent at the CMB is about 35 degrees. We propose the existence of a gap of 300 km, splitting the structure into two blocks. Our results are based on remarkable differences in SK(K) S travel-time residuals over a few degrees distance. The complexity of the structure could provide a key to an improved understanding of the deep-mantle LVZ dynamics and composition by comparison to geodynamic models. The gap in the model might suggest that the 2D cross section is cutting through a 3D indentation in the boundary of the ALVZ but may also be interpreted as a sign of two individual plumes, rather than one large homogeneous upwelling. Y1 - 2017 U6 - https://doi.org/10.1785/0120160215 SN - 0037-1106 SN - 1943-3573 VL - 107 SP - 1688 EP - 1703 PB - Seismological Society of America CY - Albany ER - TY - GEN A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Rößler, Dirk T1 - Rupture imaging of large earthquakes with a poststack isochrone migration method N2 - Rapid and robust characterization of large earthquakes in terms of their spatial extent and temporal duration is of high importance for disaster mitigation and early warning applications. Backtracking of seismic P-waves was successfully used by several authors to image the rupture process of the great Sumatra earthquake (26.12.2004) using short period and broadband arrays. We follow here an approach of Walker et al. to backtrack and stack broadband waveforms from global network stations using traveltimes for a global Earth model to obtain the overall spatio-temporal development of the energy radiation of large earthquakes in a quick and robust way. We present results for selected events with well studied source processes (Kokoxili 14.11.2001, Tokachi-Oki 25.09.2003, Nias 28.03.2005). Further, we apply the technique in a semi-real time fashion to broadband data of earthquakes with a broadband magnitude >= 7 (roughly corresponding to Mw 6.5). Processing is based on first automatic detection messages from the GEOFON extended virtual network (GEVN). KW - Seismologie KW - Erdbeben KW - Array Seismologie KW - Migration KW - Seismology KW - Earthquake KW - Array Seismology KW - Migration Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18395 ER - TY - JOUR A1 - Fischer, Tomas A1 - Hrubcova, Pavla A1 - Dahm, Torsten A1 - Woith, Heiko A1 - Vylita, Tomas A1 - Ohrnberger, Matthias A1 - Vlcek, Josef A1 - Horalek, Josef A1 - Dedecek, Petr A1 - Zimmer, Martin A1 - Lipus, Martin P. A1 - Pierdominici, Simona A1 - Kallmeyer, Jens A1 - Krüger, Frank A1 - Hannemann, Katrin A1 - Korn, Michael A1 - Kämpf, Horst A1 - Reinsch, Thomas A1 - Klicpera, Jakub A1 - Vollmer, Daniel A1 - Daskalopoulou, Kyriaki T1 - ICDP drilling of the Eger Rift observatory BT - magmatic fluids driving the earthquake swarms and deep biosphere JF - Scientific Drilling N2 - The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Novy Kostel seismogenic zone, borehole F3 in the Hartousov mofette field and borehole S4 in the newly discovered Bazina maar near Liba. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartousov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity. Y1 - 2022 U6 - https://doi.org/10.5194/sd-31-31-2022 SN - 1816-8957 SN - 1816-3459 VL - 31 SP - 31 EP - 49 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Rümpker, Georg A1 - Psencik, Ivan T1 - Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy N2 - Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance. KW - Seismologie KW - Erbeben KW - Momententensor KW - Anisotropie KW - Vogtland KW - Seismology KW - tensile earthquake KW - moment tensor KW - anisotropy KW - West Bohemia Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12975 ER - TY - GEN A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ohrnberger, Matthias T1 - Rupture propagation of recent large TsE off-coast Sumatra and Java N2 - The spatio-temporal evolution of the three recent tsunamogenic earthquakes (TsE) off-coast N-Sumatra (Mw9.3), 28/03/2005 (Mw8.5) off-coast Nias, on 17/07/2006 (Mw7.7) off-coast Java. Start time, duration, and propagation of the rupture are retrieved. All parameters can be obtained rapidly after recording of the first-arrival phases in near-real time processing. We exploit semblance analysis, backpropagation and broad-band seismograms within 30°-95° distance. Image enhancement is reached by stacking the semblance of arrays within different directions. For the three events, the rupture extends over about 1150, 150, and 200km, respectively. The events in 2004, 2005, and 2006 had source durations of at least 480s, 120s, and 180s, respectively. We observe unilateral rupture propagation for all events except for the rupture onset and the Nias event, where there is evidence for a bilateral start of the rupture. Whereas average rupture speed of the events in 2004 and 2005 is in the order of the S-wave speed (≈2.5-3km/s), unusually slow rupturing (≈1.5 km/s) is indicated for the July 2006 event. For the July 2006 event we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power generally increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes. KW - Tsunami KW - Erdbeben KW - Indischer Ozean KW - Bruchausbreitung KW - Seismologie KW - Tsunami KW - Earthquake KW - Indonesia KW - Indian Ocean KW - Rupture Propagation KW - Seismology Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13039 ER - TY - JOUR A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ohrnberger, Matthias T1 - Rupture propagation of the TsE (Mw7.7) on 17 July 2006 off-coast Java N2 - The Mw=7.7 tsunamogenic earthquake (TsE) on 17 July 2006, 08:19:28 shock the Indian Ocean at about 15 km depth off-coast Java, Indonesia. It caused a local tsunami with wave heights exceeding 2 m. The death toll reached several hundred. Thousands of people were displaced. By means of standard array methods, we have investigated the propagation and the extent of the rupture front of the causative earthquake. Waveform similarity is expressed by means of the semblance. We back-propagate the semblance for first-arrival phases recorded at broad-band stations within teleseismic distances (30°-95°). Image enhancement is realised by stacking the semblance of 8 arrays within different epicentral and azimuthal directions. From teleseismic observations we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE and source duration >125 s. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Unusually slow rupturing (≈1.5 km/s) is indicated. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes. KW - Seismologie KW - Erdbeben KW - Tsunami KW - Indischer Ozean Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12964 ER - TY - JOUR A1 - Karamzadeh Toularoud, Nasim A1 - Heimann, Sebastian A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Earthquake source arrays BT - optimal configuration and applications in crustal structure studies JF - Geophysical journal international N2 - A collection of earthquake sources recorded at a single station, under specific conditions, are considered as a source array (SA), that is interpreted as if earthquake sources originate at the station location and are recorded at the source location. Then, array processing methods, that is array beamforming, are applicable to analyse the recorded signals. A possible application is to use source array multiple event techniques to locate and characterize near-source scatterers and structural interfaces. In this work the aim is to facilitate the use of earthquake source arrays by presenting an automatic search algorithm to configure the source array elements. We developed a procedure to search for an optimal source array element distribution given an earthquake catalogue including accurate origin time and hypocentre locations. The objective function of the optimization process can be flexibly defined for each application to ensure the prerequisites (criteria) of making a source array. We formulated four quantitative criteria as subfunctions and used the weighted sum technique to combine them in one single scalar function. The criteria are: (1) to control the accuracy of the slowness vector estimation using the time domain beamforming method, (2) to measure the waveform coherency of the array elements, (3) to select events with lower location error and (4) to select traces with high energy of specific phases, that is, sp- or ps-phases. The proposed procedure is verified using synthetic data as well as real examples for the Vogtland region in Northwest Bohemia. We discussed the possible application of the optimized source arrays to identify the location of scatterers in the velocity model by presenting a synthetic test and an example using real waveforms. KW - location of scatterers KW - optimization KW - source array design Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa002 SN - 0956-540X SN - 1365-246X VL - 221 IS - 1 SP - 352 EP - 370 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kulikova, Galina A1 - Krüger, Frank T1 - Historical seismogram reproductions for the source parameters determination of the 1902, Atushi (Kashgar) earthquake JF - Journal of seismology N2 - The majority of original seismograms recorded at the very beginning of instrumental seismology (the early 1900s) did not survive till present. However, a number of books, bulletins, and catalogs were published including the seismogram reproductions of some, particularly interesting earthquakes. In case these reproductions contain the time and amplitude scales, they can be successfully analyzed the same way as the original records. Information about the Atushi (Kashgar) earthquake, which occurred on August 22, 1902, is very limited. We could not find any original seismograms for this earthquake, but 12 seismograms from 6 seismic stations were printed as example records in different books. These data in combination with macroseismic observations and different bulletins information published for this earthquake were used to determine the source parameters of the earthquake. The earthquake epicenter was relocated at 39.87A degrees N and 76.42A degrees E with the hypocenter depth of about 18 km. We could further determine magnitudes m (B) = 7.7 +/- 0.3, M (S) = 7.8 +/- 0.4, M (W) = 7.7 +/- 0.3 and the focal mechanism of the earthquake with strike/dip/rake - 260A degrees +/- 20/30A degrees +/- 10/90A degrees +/- 10. This study confirms that the earthquake likely had a smaller magnitude than previously reported (M8.3). The focal mechanism indicates dominant thrust faulting, which is in a good agreement with presumably responsible Tuotegongbaizi-Aerpaleike northward dipping thrust fault kinematic, described in previous studies. KW - Historical seismogram reproductions KW - Analogue seismic records KW - Seismic source parameters Y1 - 2017 U6 - https://doi.org/10.1007/s10950-017-9683-z SN - 1383-4649 SN - 1573-157X VL - 21 SP - 1577 EP - 1597 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Krüger, Frank A1 - Kulikova, Galina A1 - Landgraf, Angela T1 - Instrumental magnitude constraints for the 11 July 1889, Chilik earthquake JF - Seismicity, fault rupture and earthquake hazards in slowly deforming regions N2 - A series of large-magnitude earthquakes above 6.9 occurred in the northern Tien-Shan between 1885 and 1911. The Chilik earthquake of 11 July 1889, has been listed with a magnitude of 8.3, based on sparse macroseismic intensities, constrained by reported damage. Despite the existence of several juvenile fault scarps in the epicentral region, that are possibly associated with the 1889 earthquake, no through-going surface rupture having the dimensions expected for a magnitude 8.3 earthquake has been located - a puzzling dilemma. Could the magnitude have been overestimated? This would have major implications not only for the understanding of the earthquake series, but also for regional hazard estimates. Fortunately, a fragmentary record from an early Rebeur-Paschwitz seismometer exists for the Chilik event, recorded in Wilhelmshaven (Germany). To constrain the magnitude, we compare the late coda waves of this record with those of recent events from Central Asia, recorded on modern instruments in Germany and filtered with Rebeur-Paschwitz instrument characteristics. Additional constraints come from disturbances of historic magnetograms that exist from the Chilik and the 1911 Chon-Kemin earthquakes. Scaling of these historic records confirm a magnitude of about 8 for the 1889 Chilik earthquake, pointing towards a lower crustal contribution to the fault area. Y1 - 2017 SN - 978-1-86239-745-3 SN - 978-1-86239-964-8 U6 - https://doi.org/10.1144/SP432.8 SN - 0305-8719 VL - 432 SP - 41 EP - 72 PB - The Geological Society CY - London ER - TY - GEN A1 - Lipke, Katrin A1 - Krüger, Frank A1 - Rößler, Dirk T1 - Subduction zone structure along Sumatra from receiver functions N2 - Receiver functions are a good tool to investigate the seismotectonic structure beneath the a seismic station. In this study we apply the method to stations situated on or near Sumatra to find constraints on a more detailed velocity model which should improve earthquake localisation. We estimate shallow Moho-depths (~ 21 km) close to the trench and depths of ~30 km at greater distances. First evidences for the dip direction of the slab of ~60° are provided. Receiver functions were calculated for 20 stations for altogether 110 earthquakes in the distance range between 30° and 95° from the receiver. However the number of receiver functions per station is strongly variable as it depends on the installation date, the signal-to-noise-ratio of the station and the reliability of the acquisition. N2 - Receiver Funkttion stellen eine gut Methode zur Untersuchung von Seismotektonischen Strukturen unterhalb einer seismischen Station dar. In dieser Arbeit wenden wir die Methode auf Station auf oder nahe Sumatra an um Hinweise für ein detaillierteres Geschwindigkeitsmodell zu erhalten, welches die Lokalisierung von Erdbeben verbessern sollte. Wir ermitteln flache Moho-Tiefen (~21 km) in der Nähe des Trenchs und Tiefen um die 30 km in größeren Distanzen. Erste Hinweise für eine Einfallsrichtung des Slabs von ~60° konnten gefunden werden. Receiver Funktionen wurden für 20 Stationen für insgesamt 110 Erdbeben im Distanzbereich zwischen 30° und 95° berechnet. allerdings ist die Anzahl von Receiver Funktionen pro Station sehr variabel, da sie vom Installationszeitpunkt, dem Signal-Rausch-Verhältnis und der Zuverlässigkeit der Datenaufnahme an der Station abhängt. KW - Receiver Funktionen KW - Sumatra KW - Seismologie KW - Subduktion KW - Receiver Functions KW - Sumatra KW - Seismology KW - Subduction Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18260 ER - TY - GEN A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Ehlert, Lutz T1 - Automatic near real-time characterisation of large earthquakes N2 - An der Universität Potsdam wird seit 2008 ein automatisiertes Verfahren angewandt, um Bruchparamter großer Erdbeben in quasi-Echtzeit, d.h. wenige Minuten nachdem sich das Beben ereignet hat, zu bestimmen und der Öffentlichkeit via Internet zur Verfügung zu stellen. Es ist vorgesehen, das System in das Deutsch-Indonesische Tsunamifrühwarnsystem (GITEWS) zu integrieren, für das es speziell konfiguriert ist. Wir bestimmen insbesondere die Dauer und die Ausdehnung des Erdbebens, sowie dessen Bruchgeschwindigkeit und -richtung. Dabei benutzen wir die Seismogramme der zuerst eintreffenden P Wellen vom Breitbandstationen in teleseimischer Entfernung vom Beben sowie herkömmliche Arrayverfahren in teilweise modifizierter Form. Die Semblance wir als Ähnlichkeitsmaß verwendet, um Seismogramme eines Stationsnetzes zu vergleichen. Im Falle eines Erdbebens ist die Semblance unter Berücksichtigung des Hypozentrums zur Herdzeit und während des Bruchvorgangs deutlich zeitlich und räumlich erhöht und konzentriert. Indem wir die Ergebnisse verschiedener Stationsnetzwerke kombinieren, erreichen wir Unabhängigkeit von der Herdcharakteristik und eine raum-zeitliche Auflösung, die es erlaubt die o.g. Parameter abzuleiten. In unserem Beitrag skizzieren wir die Methode. Anhand der beiden M8.0 Benkulu Erdbeben (Sumatra, Indonesien) vom 12.09.2007 und dem M8.0 Sichuan Ereignis (China) vom 12.05.2008 demonstrieren wir Auflösungsmöglichkeiten und vergleichen die Ergebnisse der automatisierten Echtzeitanwendung mit nachträglichen Berechnungen. Weiterhin stellen wir eine Internetseite zur Verfügung, die die Ergebnisse präsentiert und animiert. Diese kann z.B. in geowissenschaftlichen Einrichtungen an Computerterminals gezeigt werden. Die Internetauftritte haben die folgenden Adressen: http://www.geo.uni-potsdam.de/arbeitsgruppen/Geophysik_Seismologie/forschung/ruptrack/openday http://www.geo.uni-potsdam.de/arbeitsgruppen/Geophysik_Seismologie/forschung/ruptrack KW - Erdbeben KW - Arrayseismologie KW - Echtzeitanwendung KW - teleseismische Bruchverfolgung KW - earthquake KW - array seismology KW - real-time application KW - teleseismic rupture tracking Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-20191 ER - TY - GEN A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ohrnberger, Matthias T1 - Automatic near real-time characterisation of large earthquakes N2 - We use seismic array methods (semblance analysis) to image areas of seismic energy release in the Sunda Arc region and world-wide. Broadband seismograms at teleseismic distances (30° ≤ Δ ≤ 100°) are compared at several subarrays. Semblance maps of different subarrays are multiplied. High semblance tracked over long time (10s of second to minutes) and long distances indicate locations of earthquakes. The method allows resolution of rupture characteristics important for tsunami early warning: start and duration, velocity and direction, length and area. The method has been successfully applied to recent and historic events (M>6.5) and is now operational in real time. Results are obtained shortly after source time, see http://www.geo.uni-potsdam.de/Forschung/Geophysik/GITEWS/tsunami.htm). Comparison of manual and automatic processing are in good agreement. Computational effort is small. Automatic results may be obtained within 15 - 20 minutes after event occurrence. KW - Seismology KW - Earthquake KW - Tsunami KW - Array Seismology Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18382 ER - TY - GEN A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ohrnberger, Matthias T1 - Rupture Propagation of the 2008/05/12 Ms8.0 Wenchuan Earthquake N2 - We study the rupture propagation of the 2008/05/12 Ms8.0 Wenchuan Earthquake. We apply array techniques such as semblance vespagram analysis to P waves recorded at seismic broadband station within 30-100° epicentral distance. By combination of multiple large aperture station groups spatial and temporal resolution is enhanced and problems due source directivity and source mechanism are avoided. We find that seismic energy was released for at least 110 s. Propagating unilaterally at sub-shear rupture velocity of about 2.5 km/s in NE direction, the earthquake reaches a lateral extent of more than 300 km. Whereas high semblance during within 70 s from rupture start indicates simple propagation more complex source processes are indicated thereafter by decreases coherency in seismograms. At this stage of the event coherency is low but significantly above noise level. We emphasize that first result of our computations where obtain within 30 minutes after source time by using an atomized algorithm. This procedure has been routinely and globally applied to major earthquakes. Results are made public through internet. KW - Sichuan KW - Wenchuan KW - Erdbeben KW - Bruchverfolgung KW - Arrayseismologie KW - Sichuan KW - Wenchuan KW - earthquake KW - rupture KW - propagation KW - array seismology Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29195 ER - TY - JOUR A1 - Lipke, Katrin A1 - Zitzmann, Max A1 - Amberger, Manuel A1 - Ehlert, Carsten A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ohrnberger, Matthias T1 - Traveltime residuals at regional and teleseismic distances for SE-Asia N2 - Traveltime residuals for worldwide seismic stations are calculated. We use P and S waves from earthquakes in SE-Asia at teleseismic and regional distances. The obtained station residuals help to enhance earthquake localisation. Furthermore we calculated regional source dependent station residuals. They show a systematic dependence of the locality of the source. These source dependent residuals reflect heterogenities along the path and can be used for a refinement of earthquake localisation. N2 - Laufzeitresiduen für weltweite seismische Stationen werden berechnet. Wir nutzen P - und S-Wellen von Erdbeben in Südostasien in teleseismischen und regionalen Distanzen. Die so erhaltenen Stationsresiduen helfen, die Lokaliesierung von Erdbeben zu verbessern. Außerdem berechnen wir regional quellabhängige Stationsresiduen. Diese zeigen eine systematische Abhänbgigkeit vom Ort der Quelle. Sie spiegeln Heterogenitäten entlang des Strahlweges wieder und können für eine Verfeinerung der Ersbebenlokaliesierung genutzt werden. KW - Seismologie KW - Südostasien KW - Laufzeitresiduen KW - GITEWS KW - Wellengeschwindigkeiten KW - seismology KW - Southeast Asia KW - traveltime KW - residuals KW - GITEWS Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14117 ER - TY - JOUR A1 - Knapmeyer-Endrun, Brigitte A1 - Krüger, Frank A1 - Geissler, Wolfram H. T1 - Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions JF - Earth & planetary science letters N2 - We present a high-resolution study of the upper mantle structure of Central Europe, including the western part of the East European Platform, based on S-receiver functions of 345 stations. A distinct contrast is found between Phanerozoic Europe and the East European Craton across the Trans-European Suture Zone. To the west, a pronounced velocity reduction with depth interpreted as lithosphere-asthenosphere boundary (LAB) is found at an average depth of 90 km. Beneath the craton, no strong and continuous LAB conversion is observed. Instead we find a distinct velocity reduction within the lithosphere, at 80-120 km depth. This mid-lithospheric discontinuity (MLD) is attributed to a compositional boundary between depleted and more fertile lithosphere created by late Proterozoic metasomatism. A potential LAB phase beneath the craton is very weak and varies in depth between 180 and 250 km, consistent with a reduced velocity contrast between the lower lithosphere and the asthenosphere. Within the Trans-European Suture Zone, lithospheric structure is characterized by strong heterogeneity. A dipping or step-wise increase to LAB depth of 150 km is imaged from Phanerozoic Europe to 20-22 degrees E, whereas no direct connection to the cratonic LAB or MLD to the east is apparent. At larger depths, a positive conversion associated with the lower boundary of the asthenosphere is imaged at 210-250 km depth beneath Phanerozoic Europe, continuing down to 300 km depth beneath the craton. Conversions from both 410 km and 660 km discontinuities are found at their nominal depth beneath Phanerozoic Europe, and the discontinuity at 410 km depth can also be traced into the craton. A potential negative conversion on top of the 410 km discontinuity found in migrated images is analyzed by modeling and attributed to interference with other converted phases. KW - lithosphere-asthenosphere boundary KW - mid-lithospheric discontinuity KW - Lehmann discontinuity KW - S-receiver functions KW - Trans-European Suture Zone KW - East European Craton Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.11.011 SN - 0012-821X SN - 1385-013X VL - 458 SP - 429 EP - 441 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Hannemann, Katrin T1 - Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array JF - Geophysical journal international N2 - A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity. KW - body waves KW - earthquake source observations KW - seismicity and tectonics Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa054 SN - 0956-540X SN - 1365-246X VL - 221 IS - 2 SP - 1055 EP - 1080 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Kriegerowski, Marius A1 - Cesca, Simone A1 - Ohrnberger, Matthias A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Event couple spectral ratio Q method for earthquake clusters BT - application to northwest Bohemia T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q-1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high-frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wave-field seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to northwest Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp < 100. The application to S phases fails due to scattered P-phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly fractured and fluid saturated rocks in the source region of the swarms in northwest Bohemia. However, high temperatures in a small volume around the swarms cannot be excluded to explain our observations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 683 KW - west bohemia KW - attenuation tomography KW - swarm earthquakes KW - focal zone KW - parameters KW - locations KW - fault Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426029 IS - 683 ER - TY - JOUR A1 - Kriegerowski, Marius A1 - Cesca, Simone A1 - Ohrnberger, Matthias A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Event couple spectral ratio Q method for earthquake clusters BT - application to northwest Bohemia JF - Solid Earth N2 - We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q-1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high-frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wave-field seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to northwest Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp < 100. The application to S phases fails due to scattered P-phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly fractured and fluid saturated rocks in the source region of the swarms in northwest Bohemia. However, high temperatures in a small volume around the swarms cannot be excluded to explain our observations. KW - west bohemia KW - attenuation tomography KW - swarm earthquakes KW - focal zone KW - parameters KW - locations KW - fault Y1 - 2019 U6 - https://doi.org/10.5194/se-10-317-2019 SN - 1869-9529 IS - 10 SP - 317 EP - 328 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Kito, Tadashi A1 - Krüger, Frank A1 - Negishi, H. T1 - Seismic heterogeneous structure in the lowermost mantle beneath the southwestern Pacific N2 - The P and S wave velocity structure of the D" layer beneath the southwestern Pacific was investigated by using short-period data from 12 deep events in the Tonga-Fiji region recorded by the J-Array and the Hi-net (two large- aperture seismic arrays) in Japan. Reflected wave beam forming (RWB) and a migration method were used to extract weak signals originating from heterogeneities in the lowermost mantle. In order to acquire high resolution a double-array method was applied to the data. The results of the RWB method indicate that seismic energy is reflected at discontinuities near the depths of 2520 and 2650 km, which have a negative P wave velocity contrast of 1% at the most. In addition, there is a positive seismic discontinuity at a depth of 2800 km. In the case of the S wave, reflected energy is produced almost at the same depth (2550 km depth). An apparent depth shift (50 km) of the discontinuity at the depth of 2850 km may indicate that the S wave velocity reduction in the lowermost mantle is similar to2-3 times stronger than that of P. A two-dimensional cross section, constructed with the RWB method, suggests that the observed discontinuities can be characterized as intermittent lateral heterogeneities whose lateral extent is a few hundred kilometers. The migration shows weak evidence of scattering objects which belong to the seismic discontinuities detected by the RWB method. These anomalous structures may represent a part of hot plume generated beneath the southwestern Pacific in the lowermost mantle Y1 - 2004 ER - TY - JOUR A1 - Dahm, Torsten A1 - Krüger, Frank A1 - Essen, Heinz-Hermann A1 - Hensch, Martin T1 - Historic microseismic data and their relation to the wave-climate in the North Atlantic N2 - Microseismic data from observatories in Europe, which have been continuously recorded since about 100 years, contain information on the wave-climate in the North Atlantic. They can potentially be used as additional constraints in high-resolution temporal and spatial reconstructions of the storminess and oceanic waveheights in the past. To resolve spatial patterns data from observatories in different regions are needed. While previous recent studies analyzed only few observatory archives and relatively short time ranges, this is a first attempt to process the whole available data archive from different observatories. We correct and compare smoothed microseismic data from different stations and discuss their correlation and possible use for studies of storminess variability. Microseismic amplitudes at four seismic stations in northern Europe show amplitude peaks in 1920 and 1925, a slow decline in amplitudes till the middle of the 1930's followed by a steady increase of amplitudes till about 1990. From 1990 on microseismic amplitudes decrease. We find a good correlation between the average surface wind velocity in the North Atlantic and microseismic amplitudes at inland stations far away from the coast. Coastal stations are more influenced by local swell and are thus potentially useful to recover regional changes in wind and ocean wavefields with time. The study demonstrates that the analysis of microseismic has the potential to assess climate changes during the last 100 years Y1 - 2005 ER - TY - JOUR A1 - Kruger, Frank A1 - Ohrnberger, Matthias T1 - Tracking the rupture of the M-w=9.3 Sumatra earthquake over 1,150 km at teleseismic distance N2 - On 26 December 2004, a moment magnitude M-w = 9.3 earthquake occurred along Northern Sumatra, the Nicobar and Andaman islands, resulting in a devastating tsunami in the Indian Ocean region(1). The rapid and accurate estimation of the rupture length and direction of such tsunami-generating earthquakes is crucial for constraining both tsunami wave- height models as well as the seismic moment of the events. Compressional seismic waves generated at the hypocentre of the Sumatra earthquake arrived after about 12 min at the broadband seismic stations of the German Regional Seismic Network (GRSN)(2,3), located approximately 9,000 km from the event. Here we present a modification of a standard array- seismological approach and show that it is possible to track the propagating rupture front of the Sumatra earthquake over a total rupture length of 1,150 km. We estimate the average rupture speed to be 2.3-2.7 km s(-1) and the total duration of rupture to be at least 430 s, and probably between 480 and 500 s. Y1 - 2005 SN - 0028-0836 ER - TY - JOUR A1 - Krüger, Frank A1 - Ohrnberger, Matthias T1 - Spatio-temporal source characteristics of the 26 December 2004 Sumatra earthquake as imaged by teleseismic broadband arrays N2 - We test the capability of broadband arrays at teleseismic distances to image the spatio-temporal characteristics of the seismic energy release during the Dec 26, 2004 Sumatra earthquake at early observation times. Using a non-plane-wave array location technique previously reported values for rupture length (about 1150 km), duration (about 480 s), and average rupture velocity (2.4-2.7 km/s) are confirmed. Three dominant energy releases are identified: one near the hypocenter, a second at 6 degrees N94 degrees E about 130 s later and a third one after 300 s at 9 degrees N92-93 degrees E. The spatio-temporal distribution of the radiated seismic energy in the source region is calculated from the stacked broadband recordings of two arrays in Germany and Japan and results in rough estimates of the total seismic energy of 0.55.10(18) Nm (GRSN) and 1.53.10(18) Nm (FNET) respectively. Changes in the relative ratio of energy as function of spatio-temporal location indicate a rotation of the focal mechanism during the rupture process Y1 - 2005 ER - TY - GEN A1 - Donner, Stefanie A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ghods, Abdolreza A1 - Strecker, Manfred T1 - Source mechanisms of the 2004 Baladeh (Iran) earthquake sequence from Iranian broadband and short-period data and seismotectonic implications N2 - The northward movement and collision of the Arabian plate with Eurasia generates compressive stresses and resulting shortening in Iran. Within the Alborz Mountains, North Iran, a complex and not well understood system of strike-slip and thrust faults accomodates a fundamental part of the NNE-SSW oriented shortening. On 28th of May 2004 the Mw 6.3 Baladeh earthquake hit the north-central Alborz Mountains. It is one of the rare and large events in this region in modern time and thus a seldom chance to study earthquake mechanisms and the local ongoing deformation processes. It also demonstrated the high vulnerability of this densily populated region. KW - Momententensoren KW - Inversion KW - Baladeh KW - Iran KW - moment tensors KW - inversion KW - Baladeh KW - Iran Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53982 ER - TY - JOUR A1 - Donner, Stefanie A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ghods, Abdolreza A1 - Strecker, Manfred T1 - Segmented seismicity of the M (w) 6.2 Baladeh earthquake sequence (Alborz Mountains, Iran) revealed from regional moment tensors JF - Journal of seismology N2 - The M (w) 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry and ongoing deformation processes using modern seismological methods. A joint inversion for hypocentres and a velocity model plus a surface-wave group dispersion curve analysis were used to obtain an adapted velocity model, customised for mid- and long-period waveform modelling. Based on the new velocity model, regional waveform data of the mainshock and larger aftershocks (M (w) a parts per thousand yen3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW-SE striking fault planes. The mainshock ruptured a 28A degrees south-dipping area of 24 x 21 km along a north-easterly direction. The rupture plane of the mainshock does not coincide with the aftershock distribution, neither in map view nor with respect to depth. The considered aftershocks form two main clusters. The eastern cluster is associated with the mainshock. The western cluster does not appear to be connected with the rupture plane of the mainshock but, instead, indicates a second activated fault plane dipping at 85A degrees towards the north. KW - Alborz Mountains KW - Iran KW - Baladeh earthquake KW - Inversion for moment tensors KW - Seismotectonics Y1 - 2013 U6 - https://doi.org/10.1007/s10950-013-9362-7 SN - 1383-4649 VL - 17 IS - 3 SP - 925 EP - 959 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Donner, Stefanie A1 - Strecker, Manfred A1 - Rößler, Dirk A1 - Ghods, Abdolreza A1 - Krüger, Frank A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - Earthquake source models for earthquakes in Northern Iran N2 - The complex system of strike-slip and thrust faults in the Alborz Mountains, Northern Iran, are not well understood yet. Mainly structural and geomorphic data are available so far. As a more extensive base for seismotectonic studies and seismic hazard analysis we plan to do a comprehensive seismic moment tensor study also from smaller magnitudes (M < 4.5) by developing a new algorithm. Here, we present first preliminary results. KW - Elburs KW - Iran KW - Momententensor KW - Seismotektonik KW - Alborz KW - Iran KW - moment tensor KW - seismotectonics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-32581 ER -