TY - JOUR A1 - Hauser, Frank A1 - Cazzamali, Giuseppe A1 - Williamson, Michael A1 - Blenau, Wolfgang A1 - Grimmelikhuijzen, CJ. T1 - A review of neurohormone GPCRs present in the fruitfly "Drosophila melanogaster" and the honey bee "Apis mellifera" N2 - G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/03010082 U6 - https://doi.org/10.1016/j.pneurobio.2006.07.005 SN - 0301-0082 ER - TY - JOUR A1 - Chipman, Ariel D. A1 - Ferrier, David E. K. A1 - Brena, Carlo A1 - Qu, Jiaxin A1 - Hughes, Daniel S. T. A1 - Schroeder, Reinhard A1 - Torres-Oliva, Montserrat A1 - Znassi, Nadia A1 - Jiang, Huaiyang A1 - Almeida, Francisca C. A1 - Alonso, Claudio R. A1 - Apostolou, Zivkos A1 - Aqrawi, Peshtewani A1 - Arthur, Wallace A1 - Barna, Jennifer C. J. A1 - Blankenburg, Kerstin P. A1 - Brites, Daniela A1 - Capella-Gutierrez, Salvador A1 - Coyle, Marcus A1 - Dearden, Peter K. A1 - Du Pasquier, Louis A1 - Duncan, Elizabeth J. A1 - Ebert, Dieter A1 - Eibner, Cornelius A1 - Erikson, Galina A1 - Evans, Peter D. A1 - Extavour, Cassandra G. A1 - Francisco, Liezl A1 - Gabaldon, Toni A1 - Gillis, William J. A1 - Goodwin-Horn, Elizabeth A. A1 - Green, Jack E. A1 - Griffiths-Jones, Sam A1 - Grimmelikhuijzen, Cornelis J. P. A1 - Gubbala, Sai A1 - Guigo, Roderic A1 - Han, Yi A1 - Hauser, Frank A1 - Havlak, Paul A1 - Hayden, Luke A1 - Helbing, Sophie A1 - Holder, Michael A1 - Hui, Jerome H. L. A1 - Hunn, Julia P. A1 - Hunnekuhl, Vera S. A1 - Jackson, LaRonda A1 - Javaid, Mehwish A1 - Jhangiani, Shalini N. A1 - Jiggins, Francis M. A1 - Jones, Tamsin E. A1 - Kaiser, Tobias S. A1 - Kalra, Divya A1 - Kenny, Nathan J. A1 - Korchina, Viktoriya A1 - Kovar, Christie L. A1 - Kraus, F. Bernhard A1 - Lapraz, Francois A1 - Lee, Sandra L. A1 - Lv, Jie A1 - Mandapat, Christigale A1 - Manning, Gerard A1 - Mariotti, Marco A1 - Mata, Robert A1 - Mathew, Tittu A1 - Neumann, Tobias A1 - Newsham, Irene A1 - Ngo, Dinh N. A1 - Ninova, Maria A1 - Okwuonu, Geoffrey A1 - Ongeri, Fiona A1 - Palmer, William J. A1 - Patil, Shobha A1 - Patraquim, Pedro A1 - Pham, Christopher A1 - Pu, Ling-Ling A1 - Putman, Nicholas H. A1 - Rabouille, Catherine A1 - Ramos, Olivia Mendivil A1 - Rhodes, Adelaide C. A1 - Robertson, Helen E. A1 - Robertson, Hugh M. A1 - Ronshaugen, Matthew A1 - Rozas, Julio A1 - Saada, Nehad A1 - Sanchez-Gracia, Alejandro A1 - Scherer, Steven E. A1 - Schurko, Andrew M. A1 - Siggens, Kenneth W. A1 - Simmons, DeNard A1 - Stief, Anna A1 - Stolle, Eckart A1 - Telford, Maximilian J. A1 - Tessmar-Raible, Kristin A1 - Thornton, Rebecca A1 - van der Zee, Maurijn A1 - von Haeseler, Arndt A1 - Williams, James M. A1 - Willis, Judith H. A1 - Wu, Yuanqing A1 - Zou, Xiaoyan A1 - Lawson, Daniel A1 - Muzny, Donna M. A1 - Worley, Kim C. A1 - Gibbs, Richard A. A1 - Akam, Michael A1 - Richards, Stephen T1 - The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima JF - PLoS biology N2 - Myriapods (e. g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pbio.1002005 SN - 1545-7885 VL - 12 IS - 11 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Blenau, Wolfgang A1 - Hauser, Frank A1 - Cazzamali, Giuseppe A1 - Williamson, Michael A1 - Grimmelikhuijzen, Cornelis J. P. T1 - A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera N2 - G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution. (c) 2006 Elsevier Ltd. All rights reserved. KW - GPCR KW - neuropeptide KW - neurohormone KW - hormone KW - biogenic amine Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44326 ER -