TY - JOUR A1 - Vanaraj, Viswajith A1 - Niederhofer, Florian A1 - Goudfrooij, Paul T1 - Role of host galaxy in the formation of multiple stellar populations BT - analysis of NGC 1786 and NGC 1898 JF - Monthly notices of the Royal Astronomical Society N2 - Even after decades of research, the origin of multiple stellar populations in globular clusters (GCs) remains enigmatic. The question as to whether the galaxy environment plays a role in their formation remains unanswered. To that extent, we analysed two classical (>10 Gyr old) Large Magellanic Cloud GCs, NGC 1786 and NGC 1898, using imaging data from Hubble Space Telescope to compare and contrast them with ancient Galactic GCs to assess systematic differences that might exist between their abundance variations. We calculated their red giant branch width, subtracted the effect of metallicity, and compared it with the available data on Galactic GCs by plotting them against initial and current cluster mass. We see that the two clusters follow the same general trend as that of the Galactic GCs, and Galactic GCs from different progenitors follow the same general trend as one another, indicating that the galaxy environment may only play a minor role in the formation of multiple stellar populations within GCs. KW - Hertzsprung-Russell and colour-magnitude diagrams KW - globular clusters: general KW - galaxies: individual: LMC KW - galaxies: star clusters: individual KW - NGC 1786 KW - NGC 1898 Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab2094 SN - 0035-8711 SN - 1365-2966 VL - 507 IS - 1 SP - 282 EP - 299 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Schmidt, Thomas A1 - Cioni, Maria-Rosa L. A1 - Niederhofer, Florian A1 - Bekki, Kenji A1 - Bell, Cameron P. M. A1 - de Grijs, Richard A1 - El Youssoufi, Dalal A1 - Ivanov, Valentin D. A1 - Oliveira, Joana M. A1 - Ripepi, Vincenzo A1 - van Loon, Jacco Th. T1 - The VMC survey: XLV. Proper motion of the outer LMC and the impact of the SMC JF - Astronomy and astrophysics N2 - Context. The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and, owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. Aims. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, for example with the SMC about 250 Myr ago. Methods. We calculate proper motions using multi-epoch K s -band images from the VISTA survey of the Magellanic Cloud system (VMC). Observations span a time baseline of 2-5 yr. We combine the VMC data with data from the Gaia Early Data Release 3 and introduce a new method to distinguish between Magellanic and Milky Way stars based on a machine learning algorithm. This new technique enables a larger and cleaner sample selection of fainter sources as it reaches below the red clump of the LMC. Results. We investigate the impact of the SMC on the rotational field of the LMC and find hints of stripped SMC debris. The southeastern region of the LMC shows a slow rotational speed compared to the overall rotation. N-body simulations suggest that this could be caused by a fraction of stripped SMC stars located in that particular region that move opposite to the expected rotation. KW - Galaxy: kinematics and dynamics KW - Magellanic Clouds KW - galaxies: KW - interactions KW - proper motions KW - surveys Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142148 SN - 0004-6361 SN - 1432-0746 VL - 663 PB - EDP Sciences CY - Les Ulis ER -