TY - JOUR A1 - Voss, Björn A1 - Bolhuis, Henk A1 - Fewer, David P. A1 - Kopf, Matthias A1 - Möke, Fred A1 - Haas, Fabian A1 - El-Shehawy, Rehab A1 - Hayes, Paul A1 - Bergman, Birgitta A1 - Sivonen, Kaarina A1 - Dittmann-Thünemann, Elke A1 - Scanlan, Dave J. A1 - Hagemann, Martin A1 - Stal, Lucas J. A1 - Hess, Wolfgang R. T1 - Insights into the physiology and ecology of the brackish-water-adapted cyanobacterium nodularia spumigena CCY9414 based on a genome-transcriptome analysis JF - PLoS one N2 - Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0060224 SN - 1932-6203 VL - 8 IS - 3 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Zirafi, Onofrio A1 - Kim, Kyeong-Ae A1 - Ständker, Ludger A1 - Mohr, Katharina B. A1 - Sauter, Daniel A1 - Heigele, Anke A1 - Kluge, Silvia F. A1 - Wiercinska, Eliza A1 - Chudziak, Doreen A1 - Richter, Rudolf A1 - Möpps, Barbara A1 - Gierschik, Peter A1 - Vas, Virag A1 - Geiger, Hartmut A1 - Lamla, Markus A1 - Weil, Tanja A1 - Burster, Timo A1 - Zgraja, Andreas A1 - Daubeuf, Francois A1 - Frossard, Nelly A1 - Hachet-Haas, Muriel A1 - Heunisch, Fabian A1 - Reichetzeder, Christoph A1 - Galzi, Jean-Luc A1 - Perez-Castells, Javier A1 - Canales-Mayordomo, Angeles A1 - Jimenez-Barbero, Jesus A1 - Gimenez-Gallego, Guillermo A1 - Schneider, Marion A1 - Shorter, James A1 - Telenti, Amalio A1 - Hocher, Berthold A1 - Forssmann, Wolf-Georg A1 - Bonig, Halvard A1 - Kirchhoff, Frank A1 - Münch, Jan T1 - Discovery and Characterization of an Endogenous CXCR4 Antagonist JF - Cell reports N2 - CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation. Y1 - 2015 U6 - https://doi.org/10.1016/j.celrep.2015.03.061 SN - 2211-1247 VL - 11 IS - 5 SP - 737 EP - 747 PB - Cell Press CY - Cambridge ER -