TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical riddling in a system of coupled maps N2 - The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state. Y1 - 2001 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical loss of synchronization in coupled chaotic systems Y1 - 2000 ER -