TY - JOUR A1 - Herman, Frederic A1 - Braun, Jean A1 - Deal, Eric A1 - Prasicek, Gunther T1 - The response time of glacial erosion JF - Journal of geophysical research : Earth surface N2 - There has been recent progress in the understanding of the evolution of Quaternary climate. Simultaneously, there have been improvements in the understanding of glacial erosion processes, with better parameter constraints. Despite this, there remains much debate about whether or not the observed cooling over the Quaternary has driven an increase in glacial erosion rates. Most studies agree that the erosional response to climate change must be transient; therefore, the time scale of the climatic change and the response time of glacial erosion must be accounted for. Here we analyze the equations governing glacial erosion in a steadily uplifting landscape with variable climatic forcing and derive expressions for two fundamental response time scales. The first time scale describes the response of the glacier and the second one the glacial erosion response. We find that glaciers have characteristic time scales of the order of 10 to 10,000 years, while the characteristic time scale for glacial erosion is of the order of a few tens of thousands to a few million years. We then use a numerical model to validate the approximations made to derive the analytical solutions. The solutions show that short period forcing is dampened by the glacier response time, and long period forcing (>1 Myr) may be dampened by erosional response of glaciers when the rock uplift rates are high. In most tectonic and climatic conditions, we expect to see the strongest response of glacial erosion to periodic climatic forcing corresponding to Plio-Pleistocene climatic cycles. Finally, we use the numerical model to predict the response of glacial systems to the observed climatic forcing of the Quaternary, including, but not limited to, the Milankovich periods and the long-term secular cooling trend. We conclude that an increase of glacial erosion in response to Quaternary cooling is physically plausible, and we show that the magnitude of the increase depends on rock uplift and ice accumulation rates. Y1 - 2018 U6 - https://doi.org/10.1002/2017JF004586 SN - 2169-9003 SN - 2169-9011 VL - 123 IS - 4 SP - 801 EP - 817 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Deal, Eric A1 - Braun, Jean A1 - Botter, Gianluca T1 - Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency JF - Journal of geophysical research : Earth surface N2 - Due to the challenges in upscaling daily climatic forcing to geological time, physically realistic models describing how rainfall drives fluvial erosion are lacking. To bridge this gap between short-term hydrology and long-term geomorphology, we derive a theoretical framework for long-term fluvial erosion rates driven by realistic climate by integrating an established stochastic-mechanistic model of hydrology into a threshold-stochastic formulation of stream power. The hydrological theory provides equations for the daily streamflow probability distribution as a function of climatic boundary conditions. The new parameters introduced are rooted firmly in established climatic and hydrological theory. This allows us to account for how fluvial erosion rates respond to changes in rainfall intensity, frequency, evapotranspiration rates, and soil moisture dynamics in a way that is consistent with existing theories. We use this framework to demonstrate how hydroclimatic conditions and erosion threshold magnitude control the degree of nonlinearity between steepness index and erosion rate. We find that hydrological processes can have a significant influence on how erosive a particular climatic forcing will be. By accounting for the influence of hydrology on fluvial erosion, we conclude that climate is an important control on erosion rates and long-term landscape evolution. Y1 - 2108 U6 - https://doi.org/10.1002/2017JF004393 SN - 2169-9003 SN - 2169-9011 VL - 123 IS - 4 SP - 744 EP - 778 PB - American Geophysical Union CY - Washington ER -