TY - GEN A1 - Henschke, Jakob A1 - Kaplick, Hannes A1 - Wochatz, Monique A1 - Engel, Tilman T1 - Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background and Aims Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time-consuming data processing procedures are undertaken. However, in clinical practice simple-real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable "off-the-shelf" sensor-software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements. Methods 24 healthy participants (9 female, 15 male, age 29 +/- 4 years, height 177 +/- 11 cm, weight 73 +/- 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass-correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement). Results ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040-0.733, RMSE: 9.7 degrees-20.3 degrees, bias: 1.2 degrees-50.7 degrees) and insufficient agreement during complex shoulder movements (ICC: 0.104-0.453, RMSE: 10.1 degrees-23.3 degrees, bias: 1.0 degrees-55.9 degrees). Peak angular velocity (ICC: 0.202-0.865, RMSE: 14.6 degrees/s-26.7 degrees/s, bias: 10.2 degrees/s-29.9 degrees/s) and mean angular velocity (ICC: 0.019-0.786, RMSE:6.1 degrees/s-34.2 degrees/s, bias: 1.6 degrees/s-27.8 degrees/s) were inconsistent. Conclusions The "off-the-shelf" sensor-software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU-software-solutions may increase measurement accuracy and permit their integration into everyday clinical practice. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 809 KW - diagnostic techniques and procedures KW - kinematics KW - shoulder joint KW - validation study KW - wearable devices Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-578278 SN - 1866-8364 SP - 1 EP - 11 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Mueller, Juliane A1 - Martinez-Valdes, Eduardo Andrés A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Differences in neuromuscular activity of ankle stabilizing muscles during postural disturbances BT - a gender-specific analysis JF - Gait & posture N2 - The purpose was to examine gender differences in ankle stabilizing muscle activation during postural disturbances. Seventeen participants (9 females: 27 +/- 2yrs., 1.69 +/- 0.1 m, 63 +/- 7 kg; 8 males: 29 +/- 2yrs., 1.81 +/- 0.1 m; 83 +/- 7 kg) were included in the study. After familiarization on a split-belt-treadmill, participants walked (1 m/s) while 15 right-sided perturbations were randomly applied 200 ms after initial heel contact. Muscle activity of M. tibialis anterior (TA), peroneus longus (PL) and gastrocnemius medialis (GM) was recorded during unperturbed and perturbed walking. The root mean square (RMS; [%]) was analyzed within 200 ms after perturbation. Co-activation was quantified as ratio of antagonist (GM)/agonist (TA) EMG-RMS during unperturbed and perturbed walking. Time to onset was calculated (ms). Data were analyzed descriptively (mean +/- SD) followed by three-way-ANOVA (gender/condition/muscle; alpha= 0.05). Perturbed walking elicited higher EMG activity compared to normal walking for TA and PL in both genders (p < 0.000). RMS amplitude gender comparisons revealed an interaction between gender and condition (F = 4.6, p = 0.049) and, a triple interaction among gender, condition and muscle (F = 4.7, p = 0.02). Women presented significantly higher EMG-RMS [%] PL amplitude than men during perturbed walking (mean difference = 209.6%, 95% confidence interval = -367.0 to -52.2%, p < 0.000). Co-activation showed significant lower values for perturbed compared to normal walking (p < 0.000), without significant gender differences for both walking conditions. GM activated significantly earlier than TA and PL (p < 0.01) without significant differences between the muscle activation onsets of men and women (p = 0.7). The results reflect that activation strategies of the ankle encompassing muscles differ between genders. In provoked stumbling, higher PL EMG activity in women compared to men is present. Future studies should aim to elucidate if this specific behavior has any relationship with ankle injury occurrence between genders. KW - Lower extremity KW - EMG KW - Perturbation KW - Split-belt treadmill KW - Ankle Y1 - 2018 U6 - https://doi.org/10.1016/j.gaitpost.2018.01.023 SN - 0966-6362 SN - 1879-2219 VL - 61 SP - 226 EP - 231 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Müller, Juliane A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Mayer, Frank A1 - Müller, Steffen T1 - Neuromuscular trunk activation patterns in back pain patients during one-handed lifting JF - World journal of orthopedics N2 - AIM To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. METHODS RESULTS Seven subjects (3m/4f; 32 +/- 7 years; 171 +/- 7 cm; 65 +/- 11 kg) were assigned to BPP (pain grade >= 2) and 36 (13m/23f; 28 +/- 8 years; 174 +/- 10 cm; 71 +/- 12 kg) to H (pain grade <= 1). H and BPP did not differ significantly in anthropometrics (P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women) chi(2) analysis revealed statistically significant differences in task failure between H vs BPP (P = 0.03). EMG-RMS ranged from 33% +/- 10%/30% +/- 9% (DL, 1 kg) to 356% +/- 148%/283% +/- 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load (P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. CONCLUSION Heavier loading leads to an increase (2-to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain. KW - Lifting KW - Core KW - Trunk KW - EMG KW - MISPEX Y1 - 2016 U6 - https://doi.org/10.5312/wjo.v8.i2.142 SN - 2218-5836 VL - 8 IS - 2 SP - 142 EP - 148 PB - Baishideng Publishing Group CY - Pleasanton ER - TY - JOUR A1 - Risch, Lucie A1 - Wochatz, Monique A1 - Messerschmidt, Janin A1 - Engel, Tilman A1 - Mayer, Frank A1 - Cassel, Michael T1 - Reliability of evaluating achilles tendon vascularization assessed with doppler ultrasound advanced dynamic flow JF - Journal of ultrasound in medicine N2 - The reliability of quantifying intratendinous vascularization by high-sensitivity Doppler ultrasound advanced dynamic flow has not been examined yet. Therefore, this study aimed to investigate the intraobserver and interobserver reliability of evaluating Achilles tendon vascularization by advanced dynamic flow using established scoring systems. Methods-Three investigators evaluated vascularization in 67 recordings in a test-retest design, applying the Ohberg score, a modified Ohberg score, and a counting score. Intraobserver and interobserver agreement for the Ohberg score and modified Ohberg score was analyzed by the Cohen kappa and Fleiss kappa coefficients (absolute), Kendall tau b coefficient, and Kendall coefficient of concordance (W; relative). The reliability of the counting score was analyzed by intraclass correlation coefficients (ICC) 2.1 and 3.1, the standard error of measurement (SEM), and Bland-Altman analysis (bias and limits of agreement [LoA]). Results-Intraobserver and interobserver agreement (absolute/relative) ranged from 0.61 to 0.87/0.87 to 0.95 and 0.11 to 0.66/0.76 to 0.89 for the Ohberg score and from 0.81 to 0.87/0.92 to 0.95 and 0.64 to 0.80/0.88 to 0.93 for the modified Ohberg score, respectively. The counting score revealed an intraobserver ICC of 0.94 to 0.97 (SEM, 1.0-1.5; bias, -1; and LoA, 3-4 vessels). The interobserver ICC for the counting score ranged from 0.91 to 0.98 (SEM, 1.0-1.9; bias, 0; and LoA, 3-5 vessels). Conclusions-The modified Ohberg score and counting score showed excellent reliability and seem convenient for research and clinical practice. The Ohberg score revealed decent intraobserver but unexpected low interobserver reliability and therefore cannot be recommended. KW - advanced dynamic flow KW - intratendinous blood flow KW - musculoskeletal KW - reliability KW - ultrasound Y1 - 2017 U6 - https://doi.org/10.1002/jum.14414 SN - 0278-4297 SN - 1550-9613 VL - 37 IS - 3 SP - 737 EP - 744 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Kuschel, Luciano Bruno A1 - Sonnenburg, Dominik A1 - Engel, Tilman T1 - Factors of muscle quality and determinants of muscle strength BT - a systematic literature review T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak–moderate negative (range r: [−0.26]–[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak–moderate positive correlation (range r: 0.177–0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]–[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28–0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 838 KW - muscle quality KW - muscle strength KW - phase angle KW - echo intensity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589104 SN - 1866-8364 IS - 838 ER - TY - JOUR A1 - Kuschel, Luciano Bruno A1 - Sonnenburg, Dominik A1 - Engel, Tilman T1 - Factors of muscle quality and determinants of muscle strength BT - a systematic literature review JF - Healthcare N2 - Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak–moderate negative (range r: [−0.26]–[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak–moderate positive correlation (range r: 0.177–0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]–[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28–0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality. KW - muscle quality KW - muscle strength KW - phase angle KW - echo intensity Y1 - 2022 U6 - https://doi.org/10.3390/healthcare10101937 SN - 2227-9032 VL - 10 PB - MDPI CY - Basel ER - TY - CHAP A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Cassel, Michael A1 - Carlsohn, Anja A1 - Mayer, Frank T1 - Reliability of ultrasound measurements for subcutaneous adipose tissue in elite canoe athletes T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2014 SN - 0195-9131 SN - 1530-0315 VL - 46 IS - 5 SP - 539 EP - 539 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass JF - BMC sports science, medicine and rehabilitation N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water KW - pipe KW - rotator cuff Y1 - 2020 U6 - https://doi.org/10.1186/s13102-020-00168-x SN - 2052-1847 VL - 12 IS - 1 PB - BioMed Central CY - London ER - TY - THES A1 - Engel, Tilman T1 - Motor control strategies in response to unexpected disturbances of dynamic postural control in people with and without low back pain T1 - Strategien der Bewegungskontrolle nach unerwarteten Störungen der dynamischen posturalen Kontrolle in Personen mit und ohne Rückenschmerzen N2 - Background: Low back pain (LBP) is one of the world wide leading causes of limited activity and disability. Impaired motor control has been found to be one of the possible factors related to the development or persistence of LBP. In particularly, motor control strategies seemed to be altered in situations requiring reactive responses of the trunk counteracting sudden external forces. However, muscular responses were mostly assessed in (quasi) static testing situations under simplified laboratory conditions. Comprehensive investigations in motor control strategies during dynamic everyday situations are lacking. The present research project aimed to investigate muscular compensation strategies following unexpected gait perturbations in people with and without LBP. A novel treadmill stumbling protocol was tested for its validity and reliability to provoke muscular reflex responses at the trunk and the lower extremities (study 1). Thereafter, motor control strategies in response to sudden perturbations were compared between people with LBP and asymptomatic controls (CTRL) (study 2). In accordance with more recent concepts of motor adaptation to pain, it was hypothesized that pain may have profound consequences on motor control strategies in LBP. Therefore, it was investigated whether differences in compensation strategies were either consisting of changes local to the painful area at the trunk, or also being present in remote areas such as at the lower extremities. Methods: All investigations were performed on a custom build split-belt treadmill simulating trip-like events by unexpected rapid deceleration impulses (amplitude: 2 m/s; duration: 100 ms; 200 ms after heel contact) at 1m/s baseline velocity. A total number of 5 (study 1) and 15 (study 2) right sided perturbations were applied during walking trials. Muscular activities were assessed by surface electromyography (EMG), recorded at 12 trunk muscles and 10 (study 1) respectively 5 (study 2) leg muscles. EMG latencies of muscle onset [ms] were retrieved by a semi-automatic detection method. EMG amplitudes (root mean square (RMS)) were assessed within 200 ms post perturbation, normalized to full strides prior to any perturbation [RMS%]. Latency and amplitude investigations were performed for each muscle individually, as well as for pooled data of muscles grouped by location. Characteristic pain intensity scores (CPIS; 0-100 points, von Korff) based on mean intensity ratings reported for current, worst and average pain over the last three months were used to allocate participants into LBP (≥30 points) or CTRL (≤10 points). Test-retest reproducibility between measurements was determined by a compilation of measures of reliability. Differences in muscular activities between LBP and CTRL were analysed descriptively for individual muscles; differences based on grouped muscles were statistically tested by using a multivariate analysis of variance (MANOVA, α =0.05). Results: Thirteen individuals were included into the analysis of study 1. EMG latencies revealed reflex muscle activities following the perturbation (mean: 89 ms). Respective EMG amplitudes were on average 5-fold of those assessed in unperturbed strides, though being characterized by a high inter-subject variability. Test-retest reliability of muscle latencies showed a high reproducibility, both for muscles at the trunk and legs. In contrast, reproducibility of amplitudes was only weak to moderate for individual muscles, but increased when being assessed as a location specific outcome summary of grouped muscles. Seventy-six individuals were eligible for data analysis in study 2. Group allocation according to CPIS resulted in n=25 for LBP and n=29 for CTRL. Descriptive analysis of activity onsets revealed longer delays for all muscles within LBP compared to CTRL (trunk muscles: mean 10 ms; leg muscles: mean 3 ms). Onset latencies of grouped muscles revealed statistically significant differences between LBP and CTRL for right (p=0.009) and left (p=0.007) abdominal muscle groups. EMG amplitude analysis showed a high variability in activation levels between individuals, independent of group assignment or location. Statistical testing of grouped muscles indicated no significant difference in amplitudes between LBP and CTRL. Discussion: The present research project could show that perturbed treadmill walking is suitable to provoke comprehensive reflex responses at the trunk and lower extremities, both in terms of sudden onsets and amplitudes of reflex activity. Moreover, it could demonstrate that sudden loadings under dynamic conditions provoke an altered reflex timing of muscles surrounding the trunk in people with LBP compared to CTRL. In line with previous investigations, compensation strategies seemed to be deployed in a task specific manner, with differences between LBP and CTRL being evident predominately at ventral sides. No muscular alterations exceeding the trunk could be found when being assessed under the automated task of locomotion. While rehabilitation programs tailored towards LBP are still under debate, it is tempting to urge the implementation of dynamic sudden loading incidents of the trunk to enhance motor control and thereby to improve spinal protection. Moreover, in respect to the consistently observed task specificity of muscular compensation strategies, such a rehabilitation program should be rich in variety. N2 - Hintergrund: Unterer Rückenschmerz (LBP) stellt eine der weltweit führenden Ursachen für eine eingeschränkte körperliche Funktion und Belastbarkeit dar. Defizite in der neuromuskulären Ansteuerung gelten als einer der möglichen Faktoren im Zusammenhang mit der Entstehung und Persistenz von LBP. Insbesondere in Situationen, die eine aktive Kompensation von plötzlich auftretenden Lasten am Rumpf beinhalten, konnten veränderte Strategien in der muskulären Antwort bei LBP aufgezeigt werden. Allerdings basierten solche Untersuchungen meistens auf (quasi) statischen Testsituationen unter vereinfachten Laborbedingungen. Ob die beobachteten muskulären Reaktionen isolierter Rumpfbelastungen repräsentativ sind für eine neuromuskuläre Ansteuerung unter dynamischen Alltagsbedingungen ist bisher nicht geklärt. Ziel der vorliegenden Arbeit war es, muskuläre Kompensationsstrategien in Folge unerwarteter Gangperturbationen bei Personen mit und ohne LBP zu untersuchen. Um muskuläre Reflexantworten am Rumpf und an den unteren Extremitäten zu provozieren wurde ein neu entwickeltes Laufband-Stolperprotokoll auf Validität und Reliabilität getestet (Studie 1). Aufbauend erfolgte der Vergleich neuromuskulärer Antworten in Reaktion auf plötzlich applizierte Gangperturbationen zwischen Personen mit LBP und asymptomatischen Kontrollpersonen (CTRL) (Studie 2). In Übereinstimmung mit aktuellen Modellen zur motorischen Anpassung bei Schmerzen wurde untersucht, ob Unterschiede in den beobachteten Kompensationsstrategien auf lokale Veränderungen am Rumpf reduziert sind, oder ebenfalls in rumpffernen Körperregionen auftreten. Methoden: Alle Untersuchungen wurden mit einem Spezial-Laufband durchgeführt, welches mittels unerwarteter schneller Abbremsimpulse (Amplitude: 2 m/s, Dauer: 100 ms, 200 ms nach Fersenkontakt) die Simulation von Stolperereignissen während der Gangbewegung (1 m/s) erlaubt. Eine Anzahl von 5 (Studie 1) bzw. 15 (Studie 2) rechtsseitigen Perturbationen wurde im Verlaufs des Stolperprotokolls appliziert. Muskuläre Aktivitäten wurden mittels Elektromyographie (EMG) von 12 Rumpf- sowie 10 (Studie 1) bzw. 5 (Studie 2) Beinmuskeln aufgezeichnet. EMG-Latenzen wurden mittels eines halb-automatischen Detektions-Verfahrens ermittelt. Die Berechnung der EMG Amplituden (RMS) erfolgte für den Zeitraum von 200 ms nach Perturbation, normiert auf den gesamten Schrittzyklus des unperturbierten Ganges [%]. Latenz- und Amplituden-Messgrößen wurden für jeden Muskel individuell und für gepoolte Daten (gruppiert nach Lokalisation) berechnet. Charakteristische Schmerzintensitätswerte (CPIS, 0-100 Punkte, von Korff), basierend auf gemittelten Angaben zu akuten, sowie höchsten und durchschnittlichen Schmerzen der letzten drei Monate wurden zur Einteilung in LBP (≥30 Punkte) und CTRL (≤ 10 Punkte) verwendet. Zur Beurteilung der Test-retest Reliabilität wurden verschiedene Reliabilitätsparameter herangezogen. Unterschiede in den Muskelaktivitäten zwischen LBP und CTRL wurden für individuelle Muskeln deskriptiv analysiert. Gepoolte Daten gruppierter Muskeln wurden mittels multivariater Varianzanalyse (MANOVA; α = 0,05) statistisch getestet. Ergebnisse: Ergebnisse von 13 Probanden wurden für die Analyse von Studie 1 herangezogen. EMG-Latenzen zeigten Muskelaktivitäten repräsentativ für Reflexantworten im Nachgang applizierter Gangperturbationen, sowohl an Rumpf- als auch an Beinmuskulatur (Mittelwert: 89 ms, Range: 75 bis 117 ms). EMG-Amplituden erreichten im Durchschnitt ein 5-fach erhöhtes Aktivitätsniveau innerhalb des 200 ms Zeitfensters nach Perturbation (Range: 106 bis 909 RMS%), jedoch gezeichnet von einer hohen interindividuellen Variabilität zwischen den Probanden. Eine hohe Reproduzierbarkeit für EMG-Latenzen konnte anhand der Reliabilitätsparameter aufgezeigt werden. EMG-Amplituden dagegen erwiesen sich als nur geringfügig reliabel bei der Betrachtung individueller Muskeln. Für die Datenanalyse in Studie 2 waren 76 Probanden geeignet. Die Gruppenzuteilung nach CPIS ergab n = 25 für LBP und n = 29 für CTRL. EMG-Latenzen zeigten eine erhöhte Aktivitätsverzögerung aller Muskeln für LBP im Vergleich zu CTRL (Rumpf: Mittelwert 10 ms; Bein: Mittelwert 3 ms). EMG-Latenzen gruppierter Muskeln zeigten statistisch signifikante Unterschiede zwischen LBP und CTRL für rechtsseitige (p=0,009) und linksseitige (p=0,007) abdominale Muskelgruppen. EMG-Amplituden waren geprägt von einer hohen interindividuellen Variabilität, unabhängig von Gruppenzuordnung oder Lokalisation. Diskussion: Das vorliegende Forschungsprojekt konnte belegen, dass Gangperturbationen dafür geeignet sind, umfassende Reflexantworten am Rumpf und den unteren Extremitäten zu provozieren. Darüber hinaus konnte gezeigt werden, dass unerwartete Gangperturbationen zu einer zeitlich verzögerten Reflexantwort der rumpfumgreifenden Muskulatur bei Personen mit LBP im Vergleich zur Kontrollgruppe führen. In Übereinstimmung mit den Ergebnissen vorheriger Untersuchungen erscheinen dabei die gewählten Kompensationsstrategien aufgabenspezifisch angepasst zu sein. Veränderte muskuläre Reaktionsmuster abseits des Rumpfes konnten trotz Einbezug weiterer Lokalisationen nicht gefunden werden. Gegenüber isolierten Rumpfbelastungen erlaubt der Einsatz indirekter Perturbationsbelastungen während des Ganges alltagsrelevante situationsspezifische Defizite neuromuskulärer Kontrolle gezielt zu untersuchen. Bei der Erstellung neuer Theapiekonzepte zur Steigerung der neuromuskulären Kontrolle sollte in diesem Zusammenhang die Einbindung alltagsähnlicher indirekter Belastungsformen des Rumpfes diskutiert werden. KW - low back pain KW - trunk KW - perturbation KW - EMG KW - reflex KW - stumbling KW - Rückenschmerz KW - Rumpf KW - Perturbationen KW - Gang KW - Stolpern KW - Reflexaktivität Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400742 ER - TY - GEN A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes BT - A Longitudinal Study N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 355 KW - Achilles and patellar tendon KW - non-athletes KW - sonography KW - training adaptation KW - young athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403823 ER - TY - GEN A1 - Lin, Chiao-I A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Nair, Alexandra A1 - Heikkila, Mika A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - The effect of chronic ankle instability on muscle activations in lower extremities T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background/Purpose Muscular reflex responses of the lower extremities to sudden gait disturbances are related to postural stability and injury risk. Chronic ankle instability (CAI) has shown to affect activities related to the distal leg muscles while walking. Its effects on proximal muscle activities of the leg, both for the injured- (IN) and uninjured-side (NON), remain unclear. Therefore, the aim was to compare the difference of the motor control strategy in ipsilateral and contralateral proximal joints while unperturbed walking and perturbed walking between individuals with CAI and matched controls. Materials and methods In a cross-sectional study, 13 participants with unilateral CAI and 13 controls (CON) walked on a split-belt treadmill with and without random left- and right-sided perturbations. EMG amplitudes of muscles at lower extremities were analyzed 200 ms after perturbations, 200 ms before, and 100 ms after (Post100) heel contact while walking. Onset latencies were analyzed at heel contacts and after perturbations. Statistical significance was set at alpha≤0.05 and 95% confidence intervals were applied to determine group differences. Cohen’s d effect sizes were calculated to evaluate the extent of differences. Results Participants with CAI showed increased EMG amplitudes for NON-rectus abdominus at Post100 and shorter latencies for IN-gluteus maximus after heel contact compared to CON (p<0.05). Overall, leg muscles (rectus femoris, biceps femoris, and gluteus medius) activated earlier and less bilaterally (d = 0.30–0.88) and trunk muscles (bilateral rectus abdominus and NON-erector spinae) activated earlier and more for the CAI group than CON group (d = 0.33–1.09). Conclusion Unilateral CAI alters the pattern of the motor control strategy around proximal joints bilaterally. Neuromuscular training for the muscles, which alters motor control strategy because of CAI, could be taken into consideration when planning rehabilitation for CAI. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 712 KW - Electromyography KW - Hip KW - Skeletal joints KW - Knees KW - Legs KW - Musculoskeletal injury KW - Walking KW - Ankles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515632 SN - 1866-8364 ER - TY - JOUR A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes: A Longitudinal Study JF - Frontiers in physiology N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 +/- 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean SD) and statistical testing for group differences was performed (cy = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 +/- 0.7 mm/5.6 +/- 0.7 mm) nor in controls (4.8 +/- 0.4 mm/4.9 +/- 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (Ml: 3.5 +/- 0.5 mm, M2: 3.8 +/- 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p <= 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. KW - Achilles and patellar tendon KW - training adaptation KW - sonography KW - young athletes KW - non-athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00795 SN - 1664-042X VL - 8 SP - 599 EP - 611 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 867 KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water pipe KW - rotator cuff Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509366 SN - 1866-8364 IS - 1 ER - TY - JOUR A1 - Kim, MyoungHwee A1 - Lin, Chiao-I A1 - Henschke, Jakob A1 - Quarmby, Andrew James A1 - Engel, Tilman A1 - Cassel, Michael T1 - Effects of exercise treatment on functional outcome parameters in mid-portion achilles tendinopathy BT - a systematic review JF - Frontiers in Sports and Active Living N2 - Exercise interventions are evident in the treatment of mid-portion Achilles tendinopathy (AT). However, there is still a lack of knowledge concerning the effect of different exercise treatments on improving a specific function (e.g., strength) in this population. Thus, this study aimed to systematically review the effect of exercise treatments on different functional outcomes in mid-portion AT. An electronic database of Pubmed, Web of Science, and Cochrane Central Register of Controlled Trials were searched from inception to 21 February 2023. Studies that investigated changes in plantar flexor function with exercise treatments were considered in mid-portion AT. Only randomized controlled trials (RCTs) and clinical controlled trials (CCTs) were included. Functional outcomes were classified by kinetic (e.g., strength), kinematic [e.g., ankle range of motion (ROM)], and sensorimotor (e.g., balance index) parameters. The types of exercise treatments were classified into eccentric, concentric, and combined (eccentric plus concentric) training modes. Quality assessment was appraised using the Physiotherapy Evidence Database scale for RCTs, and the Joanna Briggs Institute scale for CCTs. The search yielded 2,260 records, and a total of ten studies were included. Due to the heterogeneity of the included studies, a qualitative synthesis was performed. Eccentric training led to improvements in power outcomes (e.g., height of countermovement jump), and in strength outcomes (e.g., peak torque). Concentric training regimens showed moderate enhanced power outcomes. Moreover, one high-quality study showed an improvement in the balance index by eccentric training, whereas the application of concentric training did not. Combined training modalities did not lead to improvements in strength and power outcomes. Plantarflexion and dorsiflexion ROM measures did not show relevant changes by the exercise treatments. In conclusion, eccentric training is evident in improving strength outcomes in AT patients. Moreover, it shows moderate evidence improvements in power and the sensorimotor parameter "balance index". Concentric training presents moderate evidence in the power outcomes and can therefore be considered as an alternative to improve this function. Kinematic analysis of plantarflexion and dorsiflexion ROM might not be useful in AT people. This study expands the knowledge what types of exercise regimes should be considered to improve the functional outcomes in AT. KW - exercise treatments KW - eccentric training KW - concentric training KW - combined training KW - kinetic parameters KW - kinematic parameters KW - sensorimotor parameters KW - mid-portion achilles tendinopathy Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2023.1144484 SN - 2624-9367 VL - 5 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Quarmby, Andrew James A1 - Khajooei, Mina A1 - Kurtz, Philip A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Mayer, Frank A1 - Engel, Tilman T1 - Unexpected running perturbations BT - reliability and validity of a treadmill running protocol with analysis of provoked reflex activity in the lower extremities JF - Frontiers in sports and active living N2 - Introduction Balance is vital for human health and experiments have been conducted to measure the mechanisms of postural control, for example studying reflex responses to simulated perturbations. Such studies are frequent in walking but less common in running, and an understanding of reflex responses to trip-like disturbances could enhance our understanding of human gait and improve approaches to training and rehabilitation. Therefore, the primary aim of this study was to investigate the technical validity and reliability of a treadmill running protocol with perturbations. A further exploratory aim was to evaluate the associated neuromuscular reflex responses to the perturbations, in the lower limbs. Methods Twelve healthy participants completed a running protocol (9 km/h) test-retest (2 weeks apart), whereby 30 unilateral perturbations were executed via the treadmill belts (presets:2.0 m/s amplitude;150 ms delay (post-heel contact);100ms duration). Validity of the perturbations was assessed via mean +/- SD comparison, percentage error calculation between the preset and recorded perturbation characteristics (PE%), and coefficient of variation (CV%). Test-retest reliability (TRV%) and Bland-Altman analysis (BLA; bias +/- 1.96 * SD) was calculated for reliability. To measure reflex activity, electromyography (EMG) was applied in both legs. EMG amplitudes (root mean square normalized to unperturbed strides) and latencies [ms] were analysed descriptively. Results Left-side perturbation amplitude was 1.9 +/- 0.1 m/s, delay 105 +/- 2 ms, and duration 78 +/- 1 ms. Right-side perturbation amplitude was 1.9 +/- 0.1 m/s, delay 118 +/- 2 ms, duration 78 +/- 1 ms. PE% ranged from 5-30% for the recorded perturbations. CV% of the perturbations ranged from 19.5-76.8%. TRV% for the perturbations was 6.4-16.6%. BLA for the left was amplitude: 0.0 +/- 0.3m/s, delay: 0 +/- 17 ms, duration: 2 +/- 13 ms, and for the right was amplitude: 0.1 +/- 0.7, delay: 4 +/- 40 ms, duration: 1 +/- 35 ms. EMG amplitudes ranged from 175 +/- 141%-454 +/- 359% in both limbs. Latencies were 109 +/- 12-116 +/- 23 ms in the tibialis anterior, and 128 +/- 49-157 +/- 20 ms in the biceps femoris. Discussion Generally, this study indicated sufficient validity and reliability of the current setup considering the technical challenges and limitations, although the reliability of the right-sided perturbations could be questioned. The protocol provoked reflex responses in the lower extremities, especially in the leading leg. Acute neuromusculoskeletal adjustments to the perturbations could be studied and compared in clinical and healthy running populations, and the protocol could be utilised to monitor chronic adaptations to interventions over time. KW - running KW - perturbation KW - EMG KW - reliability KW - stumbling KW - reflexes KW - split-belt treadmill KW - gait Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2023.1129058 SN - 2624-9367 VL - 5 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Lin, Chiao-I A1 - Khajooei, Mina A1 - Nair, Alexandra A1 - Heikkila, Mika A1 - Kaplick, Hannes A1 - Tilman, Engel A1 - Mayer, Frank T1 - Activities of hip muscles in response to perturbed walking in individual with chronic ankle instability T2 - Medicine and science in sports and exercise : MSSE N2 - Chronic ankle instability (CAI) is not only an ankle issue, but also affects sensorimotor system. People with CAI show altered muscle activation in proximal joints such as hip and knee. However, evidence is limited as controversial results have been presented regarding changes in activation of hip muscles in CAI population. PURPOSE: To investigate the effect of CAI on activity of hip muscles during normal walking and walking with perturbations. METHODS: 8 subjects with CAI (23 ± 2 years, 171 ± 7 cm and 65 ± 4 kg) and 8 controls (CON) matched by age, height, weight and dominant leg (25 ± 3 years, 172 ± 7 cm and 65 ± 6 kg) walked shoed on a split-belt treadmill (1 m/s). Subjects performed 5 minutes of baseline walking and 6 minutes walking with 10 perturbations (at 200 ms after heel contact with 42 m/s2 deceleration impulse) on each side. Electromyography signals from gluteus medius (Gmed) and gluteus maximus (Gmax) were recorded while walking. Muscle amplitudes (Root Mean Square normalized to maximum voluntary isometric contraction) were calculated at 200 ms before heel contact (Pre200), 100 ms after heel contact (Post100) during normal walking and 200 ms after perturbations (Pert200). Differences between groups were examined using Mann Whitney U test and Bonferroni correction to account for multiple testing (adjust α level p≤ 0.0125). RESULT: In Gmed, CAI group showed lower muscle amplitude than CON group after heel contact (Post100: 18±7 % and 47±21 %, p< .01) and after walking perturbations ( 31±13 % and 62±26 %, p< .01), but not before heel contact (Pre200: 5±2 % and 11±10 %, p= 0.195). In Gmax, no difference was found between CAI and CON groups in all three time points (Pre200: 12±5 % and 17±12 %, p= 0.574; Post100: 41±21 % and 41±13 %, p= 1.00; Pert200: 79±46 % and 62±35 %, p= 0.505). CONCLUSION: People with CAI activated Gmed less than healthy control in feedback mechanism (after heel contact and walking with perturbations), but not in feedforward mechanism (before heel contact). Less activation on Gmed may affect the balance in frontal plane and increase the risk of recurrent ankle sprain, giving way or feeling ankle instability in patients with CAI during walking. Future studies should investigate the effect of Gmed strengthening or neuromuscular training on CAI rehabilitation. Y1 - 2020 U6 - https://doi.org/10.1249/01.mss.0000671060.98581.0b SN - 0195-9131 SN - 1530-0315 VL - 52 IS - 17 SP - 94 EP - 94 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - GEN A1 - Wochatz, Monique A1 - Schraplau, Anne A1 - Engel, Tilman A1 - Zecher, Mahli Megan A1 - Sharon, Hadar A1 - Alt, Yasmin A1 - Mayer, Frank A1 - Kalron, Alon T1 - Application of eccentric training in various clinical populations BT - Protocol for a multi-centered pilot and feasibility study in people with low back pain and people with multiple sclerosis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Physical activity and exercise are effective approaches in prevention and therapy of multiple diseases. Although the specific characteristics of lengthening contractions have the potential to be beneficial in many clinical conditions, eccentric training is not commonly used in clinical populations with metabolic, orthopaedic, or neurologic conditions. The purpose of this pilot study is to investigate the feasibility, functional benefits, and systemic responses of an eccentric exercise program focused on the trunk and lower extremities in people with low back pain (LBP) and multiple sclerosis (MS). A six-week eccentric training program with three weekly sessions is performed by people with LBP and MS. The program consists of ten exercises addressing strength of the trunk and lower extremities. The study follows a four-group design (N = 12 per group) in two study centers (Israel and Germany): three groups perform the eccentric training program: A) control group (healthy, asymptomatic); B) people with LBP; C) people with MS; group D (people with MS) receives standard care physiotherapy. Baseline measurements are conducted before first training, post-measurement takes place after the last session both comprise blood sampling, self-reported questionnaires, mobility, balance, and strength testing. The feasibility of the eccentric training program will be evaluated using quantitative and qualitative measures related to the study process, compliance and adherence, safety, and overall program assessment. For preliminary assessment of potential intervention effects, surrogate parameters related to mobility, postural control, muscle strength and systemic effects are assessed. The presented study will add knowledge regarding safety, feasibility, and initial effects of eccentric training in people with orthopaedic and neurological conditions. The simple exercises, that are easily modifiable in complexity and intensity, are likely beneficial to other populations. Thus, multiple applications and implementation pathways for the herein presented training program are conceivable. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 833 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588493 SN - 1866-8364 IS - 833 ER - TY - GEN A1 - Risch, Lucie A1 - Stoll, Josefine A1 - Schomöller, Anne A1 - Engel, Tilman A1 - Mayer, Frank A1 - Cassel, Michael T1 - Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound “Advanced Dynamic Flow” before (Upre) and 5, 30, 60, and 120 min (U5–U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95% CI: 2.8–9.9) and 1.7 (0.4–2.9), p < 0.01]. Overall, 63% of symptomatic and 47% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11% showed persisting IBF and 21 and 42% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3–4.5) and 0.9 (0.5–1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8–2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47–63% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels (“responders”). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous “neovascularization.” T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 746 KW - achilles tendinopathy KW - tendinosis KW - neovascularization KW - ultrasound KW - advanced dynamic flow KW - sonography Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542865 SN - 1866-8364 SP - 1 EP - 8 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Engel, Tilman A1 - Schraplau, Anne A1 - Wochatz, Monique A1 - Kopinski, Stephan A1 - Sonnenburg, Dominik A1 - Schomöller, Anne A1 - Risch, Lucie A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - Feasability of An Eccentric Isokinetic Protocol to Induce Trunk Muscle Damage: A Pilot Study T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Eccentric exercise is discussed as a treatment option for clinical populations, but specific responses in terms of muscle damage and systemic inflammation after repeated loading of large muscle groups have not been conclusively characterized. Therefore, this study tested the feasibility of an isokinetic protocol for repeated maximum eccentric loading of the trunk muscles. Nine asymptomatic participants (5 f/4 m; 34±6 yrs; 175±13 cm; 76±17 kg) performed three isokinetic 2-minute all-out trunk strength tests (1x concentric (CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension, 60°/s, ROM 55°). Outcomes were peak torque, torque decline, total work, and indicators of muscle damage and inflammation (over 168 h). Statistics were done using the Friedman test (Dunn’s post-test). For ECC1 and ECC2, peak torque and total work were increased and torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered torque and work outcomes. Muscle damage markers were highest after ECC1 (soreness 48 h, creatine kinase 72 h; p<0.05). Their overall responses (area under the curve) were abolished post-ECC2 compared to post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis factor-α were not detectable. All markers showed high inter-individual variability. The protocol was feasible to induce muscle damage indicators after exercising a large muscle group, but the pilot results indicated only weak systemic inflammatory responses in asymptomatic adults. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 773 KW - exercise KW - eccentric KW - muscle fatigue KW - trunk muscles KW - isokinetics KW - repeated bout effect KW - inflammation KW - exercise induced muscle damage KW - interleukin-6 KW - internleukin-10 KW - tumor necrosis factor-α Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557409 SN - 1866-8364 SP - E9 EP - E17 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Quarmby, Andrew James A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 830 KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587603 SN - 1866-8364 IS - 830 ER -