TY - JOUR A1 - Martinez-Valdes, Eduardo Andrés A1 - Negro, Francesco A1 - Falla, Deborah A1 - De Nunzio, Alessandro Marco A1 - Farina, Dario T1 - Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles JF - Journal of applied physiology N2 - Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10. 30. 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL (P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM (P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose. we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL (P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (similar to 63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles. KW - amplitude KW - high-density surface EMG: synergistic muscles KW - motor unit KW - motor unit action potential KW - surface electromyography Y1 - 2018 U6 - https://doi.org/10.1152/japplphysiol.01115.2017 SN - 8750-7587 SN - 1522-1601 VL - 124 IS - 4 SP - 1071 EP - 1079 PB - American Chemical Society CY - Bethesda ER - TY - JOUR A1 - Mueller, Juliane A1 - Martinez-Valdes, Eduardo Andrés A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Differences in neuromuscular activity of ankle stabilizing muscles during postural disturbances BT - a gender-specific analysis JF - Gait & posture N2 - The purpose was to examine gender differences in ankle stabilizing muscle activation during postural disturbances. Seventeen participants (9 females: 27 +/- 2yrs., 1.69 +/- 0.1 m, 63 +/- 7 kg; 8 males: 29 +/- 2yrs., 1.81 +/- 0.1 m; 83 +/- 7 kg) were included in the study. After familiarization on a split-belt-treadmill, participants walked (1 m/s) while 15 right-sided perturbations were randomly applied 200 ms after initial heel contact. Muscle activity of M. tibialis anterior (TA), peroneus longus (PL) and gastrocnemius medialis (GM) was recorded during unperturbed and perturbed walking. The root mean square (RMS; [%]) was analyzed within 200 ms after perturbation. Co-activation was quantified as ratio of antagonist (GM)/agonist (TA) EMG-RMS during unperturbed and perturbed walking. Time to onset was calculated (ms). Data were analyzed descriptively (mean +/- SD) followed by three-way-ANOVA (gender/condition/muscle; alpha= 0.05). Perturbed walking elicited higher EMG activity compared to normal walking for TA and PL in both genders (p < 0.000). RMS amplitude gender comparisons revealed an interaction between gender and condition (F = 4.6, p = 0.049) and, a triple interaction among gender, condition and muscle (F = 4.7, p = 0.02). Women presented significantly higher EMG-RMS [%] PL amplitude than men during perturbed walking (mean difference = 209.6%, 95% confidence interval = -367.0 to -52.2%, p < 0.000). Co-activation showed significant lower values for perturbed compared to normal walking (p < 0.000), without significant gender differences for both walking conditions. GM activated significantly earlier than TA and PL (p < 0.01) without significant differences between the muscle activation onsets of men and women (p = 0.7). The results reflect that activation strategies of the ankle encompassing muscles differ between genders. In provoked stumbling, higher PL EMG activity in women compared to men is present. Future studies should aim to elucidate if this specific behavior has any relationship with ankle injury occurrence between genders. KW - Lower extremity KW - EMG KW - Perturbation KW - Split-belt treadmill KW - Ankle Y1 - 2018 U6 - https://doi.org/10.1016/j.gaitpost.2018.01.023 SN - 0966-6362 SN - 1879-2219 VL - 61 SP - 226 EP - 231 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Martinez-Valdes, Eduardo Andrés A1 - Negro, F. A1 - Laine, C. M. A1 - Falla, D. A1 - Mayer, Frank A1 - Farina, Dario T1 - Tracking motor units longitudinally across experimental sessions with high-density surface electromyography JF - The Journal of Physiology N2 - A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high-density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre-post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra-class correlation coefficients ranged between 0.63-0.99 and 0.39-0.95, respectively). In Experiment II, similar to 40% of the MUs could be tracked before and after the training intervention and training-induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders. Y1 - 2016 U6 - https://doi.org/10.1113/JP273662 SN - 0022-3751 SN - 1469-7793 VL - 595 SP - 1479 EP - 1496 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Martinez-Valdes, Eduardo Andrés A1 - Farina, Dario A1 - Negro, Francesco A1 - Del Vecchio, Alessandro A1 - Falla, Deborah T1 - Early motor unit conduction velocity changes to high-intensity interval training versus continuous training JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - Purpose Moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) are associated with different adjustments in motor output. Changes in motor unit (MU) peripheral properties may contribute to these adjustments, but this is yet to be elucidated. This study evaluated early changes in MU conduction velocity (MUCV) and MU action potential amplitude after 2 wk of either HIIT or MICT. Methods Sixteen men were assigned to either an MICT group or HIIT group (n = 8 each), and participated in six training sessions over 14 d. HIIT: 8 to 12 x 60-s intervals at 100% peak power output. Moderate-intensity continuous training: 90 to 120 min continuous cycling at similar to 65% VO2peak. Preintervention and postintervention, participants performed maximal voluntary contractions (MVC) and submaximal (10%, 30%, 50%, and 70% of MVC) isometric knee extensions while high-density EMG was recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles. The high-density EMG was decomposed into individual MU by convolutive blind-source separation and tracked preintervention and postintervention. Results Both training interventions induced changes in MUCV, but these changes depended on the type of training (P < 0.001). The HIIT group showed higher values of MUCV after training at all torque levels (P < 0.05), MICT only displayed changes in MUCV at low torque levels (10%-30% MVC, P < 0.002). There were no changes in MU action potential amplitude for either group (P = 0.2). Conclusions Two weeks of HIIT or MICT elicit differential changes in MUCV, likely due to the contrasting load and volume used in such training regimes. This new knowledge on the neuromuscular adaptations to training has implications for exercise prescription. KW - Motor unit KW - Conduction velocity KW - Amplitude KW - Action potential KW - High-intensity interval training KW - Endurance training Y1 - 2018 U6 - https://doi.org/10.1249/MSS.0000000000001705 SN - 0195-9131 SN - 1530-0315 VL - 50 IS - 11 SP - 2339 EP - 2350 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Laine, Christopher M. A1 - Martinez-Valdes, Eduardo Andrés A1 - Falla, Deborah A1 - Mayer, Frank A1 - Farina, Dario T1 - Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input JF - The journal of neuroscience N2 - Neural control of synergist muscles is not well understood. Presumably, each muscle in a synergistic group receives some unique neural drive and some drive that is also shared in common with other muscles in the group. In this investigation, we sought to characterize the strength, frequency spectrum, and force dependence of the neural drive to the human vastus lateralis and vastus medialis muscles during the production of isometric knee extension forces at 10 and 30% of maximum voluntary effort. High-density surface electromyography recordings were decomposed into motor unit action potentials to examine the neural drive to each muscle. Motor unit coherence analysis was used to characterize the total neural drive to each muscle and the drive shared between muscles. Using a novel approach based on partial coherence analysis, we were also able to study specifically the neural drive unique to each muscle (not shared). The results showed that the majority of neural drive to the vasti muscles was a cross-muscle drive characterized by a force-dependent strength and bandwidth. Muscle-specific neural drive was at low frequencies (<5 Hz) and relatively weak. Frequencies of neural drive associated with afferent feedback (6 - 12 Hz) and with descending cortical input (similar to 20 Hz) were almost entirely shared by the two muscles, whereas low-frequency (<5 Hz) drive comprised shared (primary) and muscle-specific (secondary) components. This study is the first to directly investigate the extent of shared versus independent control of synergist muscles at the motor neuron level. KW - EMG KW - motor units KW - muscle synergy KW - partial coherence KW - quadriceps Y1 - 2015 U6 - https://doi.org/10.1523/JNEUROSCI.0240-15.2015 SN - 0270-6474 VL - 35 IS - 35 SP - 12207 EP - 12216 PB - Society for Neuroscience CY - Washington ER - TY - CHAP A1 - Martinez-Valdes, Eduardo Andrés A1 - Carlsohn, Anja A1 - Heydenreich, Juliane A1 - Mayer, Frank T1 - Gastrointestinal complaints following high carbohydrate intake immediately after glycogen depleting exercise: Influence on performance T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2014 SN - 0195-9131 SN - 1530-0315 VL - 46 IS - 5 SP - 160 EP - 160 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - THES A1 - Martínez Valdés, Eduardo Andrés T1 - Neuromuscular adaptations of either endurance or high-intensity interval training T1 - Neuromuskuläre Anpassung bei Ausdauer oder Hochintensiv-Intervalltraining BT - are there any differential adaptations in the motor unit population? BT - gibt es Adaptationsunterschiede in den Aktionspotenzialen motorischer Einheiten? N2 - During the last decade, high intensity interval training (HIIT) has been used as an alternative to endurance (END) exercise, since it requires less time to produce similar physiological adaptations. Previous literature has focused on HIIT changes in aerobic metabolism and cardiorespiratory fitness, however, there are currently no studies focusing on its neuromuscular adaptations. Therefore, this thesis aimed to compare the neuromuscular adaptations of both HIIT and END after a two-week training intervention, by using a novel technology called high-density surface electromyography (HDEMG) motor unit decomposition. This project consisted in two experiments, where healthy young men were recruited (aged between 18 to 35 years). In experiment one, the reliability of HDEMG motor unit variables (mean discharge rate, peak-to-peak amplitude, conduction velocity and discharge rate variability) was tested (Study 1), a new method to track the same motor units longitudinally was proposed (Study 2), and the level of low (<5Hz) and high (>5Hz) frequency motor unit coherence between vastus medialis (VM) and lateralis (VL) knee extensor muscles was measured (Study 4). In experiment two, a two-week HIIT and END intervention was conducted where cardiorespiratory fitness parameters (e.g. peak oxygen uptake) and motor unit variables from the VM and VL muscles were assessed pre and post intervention (Study 3). The results showed that HDEMG is reliable to monitor changes in motor unit activity and also allows the tracking of the same motor units across different testing sessions. As expected, both HIIT and END improved cardiorespiratory fitness parameters similarly. However, the neuromuscular adaptations of both types of training differed after the intervention, with HIIT showing a significant increase in knee extensor muscle strength that was accompanied by increased VM and VL motor unit discharge rates and HDEMG amplitude at the highest force levels [(50 and 70% of the maximum voluntary contraction force (MVC)], while END training induced a marked increase in time to task failure at lower force levels (30% MVC), without any influence on HDEMG amplitude and discharge rates. Additionally, the results showed that VM and VL muscles share most of their synaptic input since they present a large amount of low and high frequency motor unit coherence, which can explain the findings of the training intervention where both muscles showed similar changes in HDEMG amplitude and discharge rates. Taken together, the findings of the current thesis show that despite similar improvements in cardiopulmonary fitness, HIIT and END induced opposite adjustments in motor unit behavior. These results suggest that HIIT and END show specific neuromuscular adaptations, possibly related to their differences in exercise load intensity and training volume. N2 - Als Alternative zu Ausdauertraining (END) wurde während des letzten Jahrzehnts hochintensives Intervalltraining (HIIT) eingesetzt, da es weniger Zeit in Anspruch nimmt um ähnliche physiologische Anpassungen herbeizuführen. Die Literatur hat sich bislang auf Veränderungen des aeroben Stoffwechsels und der kardiorespiratorischen Fitness durch HIIT konzentriert, es fehlt jedoch an Studien, die sich mit der neuromuskulären Anpassung auseinandersetzen. Deswegen war das Ziel dieser Thesis die neuromuskulären Anpassungserscheinungen durch HIIT und END nach einer 2-wöchigen Trainingsintervention zu vergleichen. Dafür wurde eine neuartige Technik, die sogenannte High-Density Oberflächen Elektromyographie Motoreinheiten Zersetzung (HDEMG) genutzt. Dieses Projekt bestand aus zwei Experimenten, für die junge gesunde Männer zwischen 18 und 35 Jahren rekrutiert wurden. Im Rahmen des ersten Experiments wurde die Reliabilität der HDEMG Variablen (Entladungsrate, Amplitude, Weiterleitungsgeschwindigkeit und die Variabilität der Entladungsrate) untersucht (Studie 1), eine neue Methode zur longitudinalen Verfolgung der Motoreinheiten entwickelt (Studie 2) und die Kohärenz niedriger- (<5Hz) und hoher Frequenzen (>5Hz) der Knieextensoren vastus medialis (VM) und vastus lateralis (VL) gemessen (Studie 4). Das zweite Experiment beinhaltete eine zweiwöchige HIIT und END Intervention, bei der Parameter der kardiorespiratorischen Fitness (beispielsweise die maximale Sauerstoffaufnahme) und Parameter der Motoreinheiten des VM und VL vor- und nach der Intervention erfasst wurden (Studie 3). Die Ergebnisse bestätigen, dass HDEMG eine zuverlässige Methode zur Erkennung von Veränderungen der Motoreinheit-Aktivitäten ist, sowie zur Verfolgung der selben Motoreinheiten in verschiedenen Messungen. Wie erwartet haben HIIT und END die kardiorespiratorische Fitness gleichermaßen verbessert. Trotzdem unterscheiden sich die neuromuskulären Anpassungserscheinungen beider Trainingsinterventionen insofern, als dass durch HIIT ein signifikanter Kraftzuwachs der Knieextensoren hervorgerufen wurde, der durch eine erhöhte Entladungsrate der VM und VL Motoreinheiten und eine erhöhte HDEMG Amplitude bei größter Kraft [50 und 70% der Maximalkraft (MVC)] begleitet wurde. END hingegen bewirkte einen deutlichen Anstieg der „time to task failure“ bei niedrigeren Kraftintensitäten (30% MVC), ohne dabei die HDEMG Amplitude oder Entladungsrate zu beeinflussen. Außerdem konnten die Ergebnisse belegen, dass VM und VL einen Großteil des synaptischen Inputs teilen, da beide Muskeln eine hohe Kohärenz bei niedrigen- (<5Hz) und höheren Frequenzen (>5Hz) zeigen. Dies könnte eine mögliche Erklärung für die Ergebnisse der Trainingsintervention sein, bei der beide Muskeln ähnliche Veränderungen in der HDEMG Amplitude und der Entladungsrate vorwiesen. Zusammenfassend zeigen die Ergebnisse dieser Thesis, dass HIIT und END trotz ähnlicher Verbesserungen der kardiorespiratorischen Fitness unterschiedliche Anpassungen des Verhaltens der Motoreinheiten hervorrufen. Die Ergebnisse unterstreichen, dass HIIT und END spezifische Adaptionen auslösen, die möglicherweise auf den Unterschieden von Trainingsintensität und -volumen basieren. KW - high-density surface electromyography KW - motor unit decomposition KW - motor unit tracking KW - motor unit discharge rate KW - motor unit adaptation KW - neuromuscular adaptation KW - high-intensity interval training KW - endurance training KW - Mehrkanal-Oberflächen-Elektromyographie KW - motorischer Einheiten Zersetzung KW - motorischer Einheiten Verfolgung KW - motorischer Einheiten Entladungsrate KW - motorischer Einheiten Anpassung KW - neuromuskuläre Anpassung KW - hochintensives Intervalltraining KW - Ausdauertraining Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396383 ER - TY - JOUR A1 - Martinez-Valdes, Eduardo Andrés A1 - Falla, Deborah A1 - Negro, Francesco A1 - Mayer, Frank A1 - Farina, Dario T1 - Differential Motor Unit Changes after Endurance or High-Intensity Interval Training JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - Purpose Using a novel technique of high-density surface EMG decomposition and motor unit (MU) tracking, we compared changes in the properties of vastus medialis and vastus lateralis MU after endurance (END) and high-intensity interval training (HIIT). Methods Sixteen men were assigned to the END or the HIIT group (n = 8 each) and performed six training sessions for 14 d. Each session consisted of 8-12 x 60-s intervals at 100% peak power output separated by 75 s of recovery (HIIT) or 90-120 min continuous cycling at similar to 65% VO2peak (END). Pre- and postintervention, participants performed 1) incremental cycling to determine VO2peak and peak power output and 2) maximal, submaximal (10%, 30%, 50%, and 70% maximum voluntary contraction [MVC]), and sustained (until task failure at 30% MVC) isometric knee extensions while high-density surface EMG signals were recorded from the vastus medialis and vastus lateralis. EMG signals were decomposed (submaximal contractions) into individual MU by convolutive blind source separation. Finally, MU were tracked across sessions by semiblind source separation. Results After training, END and HIIT improved VO2peak similarly (by 5.0% and 6.7%, respectively). The HIIT group showed enhanced maximal knee extension torque by similar to 7% (P = 0.02) and was accompanied by an increase in discharge rate for high-threshold MU (50% knee extension MVC) (P < 0.05). By contrast, the END group increased their time to task failure by similar to 17% but showed no change in MU discharge rates (P > 0.05). Conclusions HIIT and END induce different adjustments in MU discharge rate despite similar improvements in cardiopulmonary fitness. Moreover, the changes induced by HIIT are specific for high-threshold MU. For the first time, we show that HIIT and END induce specific neuromuscular adaptations, possibly related to differences in exercise load intensity and training volume. KW - HIGH-DENSITY SURFACE EMG KW - MOTOR UNIT DECOMPOSITION KW - MOTOR UNIT TRACKING KW - MOTOR UNIT DISCHARGE RATE KW - MOTOR UNIT ADAPTATION KW - NEUROMUSCULAR ADAPTATION Y1 - 2017 U6 - https://doi.org/10.1249/MSS.0000000000001209 SN - 0195-9131 SN - 1530-0315 VL - 49 SP - 1126 EP - 1136 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -