TY - JOUR A1 - Ullner, E. A1 - Ares, S. A1 - Morelli, L. G. A1 - Oates, A. C. A1 - Jülicher, F. A1 - Nicola, E. A1 - Heussen, R. A1 - Whitmore, D. A1 - Blyuss, K. A1 - Fryett, M. A1 - Zakharova, A. A1 - Koseska, A. A1 - Nene, N. R. A1 - Zaikin, Alexei T1 - Noise and oscillations in biological sysems multidisciplinary approach between experimental biology, theoretical modelling and synthetic biology JF - International journal of modern physics : B, Condensed matter physics, statistical physics, applied physics N2 - Rapid progress of experimental biology has provided a huge flow of quantitative data, which can be analyzed and understood only through the application of advanced techniques recently developed in theoretical sciences. On the other hand, synthetic biology enabled us to engineer biological models with reduced complexity. In this review we discuss that a multidisciplinary approach between this sciences can lead to deeper understanding of the underlying mechanisms behind complex processes in biology. Following the mini symposia "Noise and oscillations in biological systems" on Physcon 2011 we have collected different research examples from theoretical modeling, experimental and synthetic biology. KW - Systems biology KW - synthetic biology KW - nonlinear dynamics Y1 - 2012 U6 - https://doi.org/10.1142/S0217979212460095 SN - 0217-9792 VL - 26 IS - 25 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Volkov, E. I. A1 - Ullner, Ekkehard A1 - Kurths, Jürgen T1 - Stochastic multiresonance in the coupled relaxation oscillators N2 - We study the noise-dependent dynamics in a chain of four very stiff excitable oscillators of the FitzHugh- Nagumo type locally coupled by inhibitor diffusion. We could demonstrate frequency- and noise-selective signal acceptance which is based on several noise-supported stochastic attractors that arise owing to slow variable diffusion between identical excitable elements. The attractors have different average periods distinct from that of an isolated oscillator and various phase relations between the elements. We explain the correspondence between the noise-supported stochastic attractors and the observed resonance peaks in the curves for the linear response versus signal frequency. (C) 2005 American Institute of Physics Y1 - 2005 SN - 1054-1500 ER - TY - JOUR A1 - Volkov, E. I. A1 - Ullner, Ekkehard A1 - Zaikin, Alexei A. A1 - Kurths, Jürgen T1 - Frequency-dependent stochastic resonance in inhibitory coupled excitable systems N2 - We study frequency selectivity in noise-induced subthreshold signal processing in a system with many noise- supported stochastic attractors which are created due to slow variable diffusion between identical excitable elements. Such a coupling provides coexisting of several average periods distinct from that of an isolated oscillator and several phase relations between elements. We show that the response of the coupled elements under different noise levels can be significantly enhanced or reduced by forcing some elements in resonance with these new frequencies which correspond to appropriate phase relations Y1 - 2003 SN - 1063-651X ER -