TY - JOUR A1 - Muñoz, Alfonso A1 - Mangano, Silvina A1 - Paz Gonzalez-Garcia, Mary A1 - Contreras, Ramon A1 - Sauer, Michael A1 - De Rybel, Bert A1 - Weijers, Dolf A1 - Juan Sanchez-Serrano, Jose A1 - Sanmartin, Maite A1 - Rojo, Enrique T1 - RIMA-Dependent Nuclear Accumulation of IYO Triggers Auxin-Irreversible Cell Differentiation in Arabidopsis JF - The plant cell N2 - The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana. Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we identified RPAP2 IYO Mate (RIMA), a homolog of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knockdown at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its prodifferentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analyzing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs. Y1 - 0201 U6 - https://doi.org/10.1105/tpc.16.00791 SN - 1040-4651 SN - 1532-298X VL - 29 IS - 3 SP - 575 EP - 588 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Robert, Helene S. A1 - Grunewald, Wim A1 - Sauer, Michael A1 - Cannoot, Bernard A1 - Soriano, Mercedes A1 - Swarup, Ranjan A1 - Weijers, Dolf A1 - Bennett, Malcolm A1 - Boutilier, Kim A1 - Friml, Jiri T1 - Plant embryogenesis requires AUX/LAX-mediated auxin influx JF - Development : Company of Biologists N2 - The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS-(ARF5)dependent auxin signalling and auxin transport. This MONOPTEROS dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling. KW - Arabidopsis thaliana embryogenesis KW - Auxin transport KW - AUX1 KW - LIKE-AUX1 (LAX) KW - MONOPTEROS (ARF5) KW - PIN KW - Brassica napus KW - Microspore Y1 - 2015 U6 - https://doi.org/10.1242/dev.115832 SN - 0950-1991 SN - 1477-9129 VL - 142 IS - 4 SP - 702 EP - 711 PB - Company of Biologists Limited CY - Cambridge ER -