TY - JOUR A1 - Ziemann, Martin Andreas A1 - Förster, Hans-Jürgen A1 - Harlov, Daniel E. A1 - Frei, Dirk T1 - Origin of fluorapatite-monazite assemblages in a metamorphosed, sillimanite-bearing pegmatoid, Reinbolt Hills, East Antarctica N2 - Thermobarometrical and mineral-chemical investigations by electron microprobe and LA-ICP-MS on a sillimanite- bearing pegmatoid from the Reinbolt Hills provide important constraints on the P-T-X-age relations of part of East Antarctica during Pan-African tectonism. U-Th-total Pb ages of monazite imply that the pegmatoid of originally Grenvillan age (zircon U-Pb age of ca. 900 Ma) underwent a major, late Pan-African (Cambrian) regional, granulite-facies metamorphism between 500 and 550 Ma. Most of the monazite formed during this event, as result of apatite metasomatism owing to infiltration of high-grade metamorphic fluids. Apatite-biotite and other mineral thermobarometers define the peak metamorphic temperatures and pressures with 850-950 degrees C and 0.8-1.0 GPa. The F-Cl-OH relations in apatite, and biotite, the chemistry of fluid inclusions and the presence of K-feldspar microveins suggest that the metasomatising fluid was a CO2-bearing, diluted KCl brine. The pegmatoid is the first record of monazite-(Ce) formed from fluorapatite that is rich in U (up to 2.6 Wt% UO2) and possesses Th/U ratios <1 (0.09 on average). These chemical signatures are direct reflection of the U and Th concentration patterns in the parental fluorapatite Y1 - 2005 SN - 0935-1221 ER - TY - JOUR A1 - Plehn, Thomas A1 - Ziemann, Dirk A1 - Megow, Jörg A1 - May, Volkhard T1 - Frenkel to Wannier-Mott Exciton Transition: Calculation of FRET Rates for a Tubular Dye Aggregate Coupled to a CdSe Nanocrystal JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The coupling is investigated of Frenkel-like exciton states formed in a tubular dye aggregate (TDA) to Wannier-Mott-like excitations of a semiconductor nanocrystal (NC). A double well TDA of the cyanine dye C8S3 with a length of 63.4 nm and a diameter of 14.7 nm is considered. The TDA interacts with a spherical Cd819Te630 NC of 4.5 nm diameter. Electronic excitations of the latter are described in a tight-binding model of the electrons and holes combined with a configuration interaction scheme to consider their mutual Coulomb coupling. To achieve a proper description of TDA excitons, a recently determined structure has been used, the energy transfer coupling has been defined as a screened interaction of atomic centered transition charges, and the site energies of the dye molecules have been the subject of a polarization correction. Even if both nanoparticles are in direct contact, the energy transfer coupling between the exciton levels of the TDA and of the NC stays below 1 meV. It results in FRET-type energy transfer with rates somewhat larger than 10(9)/s. They coincide rather well with recent preliminary experiments. Y1 - 2015 U6 - https://doi.org/10.1021/jp5111696 SN - 1520-6106 VL - 119 IS - 24 SP - 7467 EP - 7472 PB - American Chemical Society CY - Washington ER -