TY - JOUR A1 - Voss, Katalyn A. A1 - Bookhagen, Bodo A1 - Sachse, Dirk A1 - Chadwick, Oliver A. T1 - Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal JF - Journal of hydrology N2 - The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater. KW - stable isotopes KW - Himalaya KW - glacier KW - snow KW - precipitation KW - seasonality Y1 - 2020 U6 - https://doi.org/10.1016/j.jhydrol.2020.124802 SN - 0022-1694 SN - 1879-2707 VL - 586 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Repasch, Marisa A1 - Wittmann, Hella A1 - Scheingross, Joel S. A1 - Sachse, Dirk A1 - Szupiany, Ricardo A1 - Orfeo, Oscar A1 - Fuchs, Margret A1 - Hovius, Niels T1 - Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1119 KW - meteoric 10Be KW - sediment transit time KW - river sediment KW - floodplains KW - sediment routing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-494324 SN - 1866-8372 IS - 1119 ER - TY - JOUR A1 - Repasch, Marisa A1 - Wittmann, Hella A1 - Scheingross, Joel S. A1 - Sachse, Dirk A1 - Szupiany, Ricardo A1 - Orfeo, Oscar A1 - Fuchs, Margret A1 - Hovius, Niels T1 - Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be JF - Journal of Geophysical Research: Earth Surface N2 - Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems. KW - meteoric 10Be KW - sediment transit time KW - river sediment KW - floodplains KW - sediment routing Y1 - 2019 U6 - https://doi.org/10.1029/2019JF005419 SN - 2169-9011 SN - 2169-9003 VL - 125 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Lupker, Maarten A1 - Haghipour, Negar A1 - Märki, Lena A1 - Sachse, Dirk T1 - Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates. KW - particulate organic carbon KW - Himalaya KW - rivers KW - carbon cycle KW - stable KW - isotopes KW - erosion KW - end-member mixing Y1 - 2020 U6 - https://doi.org/10.1016/j.gca.2020.07.003 SN - 0016-7037 VL - 286 SP - 159 EP - 176 PB - Elsevier CY - New York [u.a.] ER - TY - JOUR A1 - Aichner, Bernhard A1 - Makhmudov, Zafar A1 - Rajabov, Iljomjon A1 - Zhang, Qiong A1 - Pausata, Francesco Salvatore R. A1 - Werner, Martin A1 - Heinecke, Liv A1 - Kuessner, Marie L. A1 - Feakins, Sarah J. A1 - Sachse, Dirk A1 - Mischke, Steffen T1 - Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period JF - Geophysical research letters N2 - The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant. KW - climate KW - biomarker KW - geochemistry KW - modelling KW - paleoclimate KW - hydrology Y1 - 2019 U6 - https://doi.org/10.1029/2019GL085202 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13972 EP - 13983 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Dietze, Michael A1 - Swoboda, Charlie A1 - Cook, Kristen L. A1 - Adhikari, Basanta R. A1 - Vieth-Hillebrand, Andrea A1 - Bonnet, Stephane A1 - Reimann, Tony A1 - Koutsodendris, Andreas A1 - Sachse, Dirk T1 - Late holocene landscape collapse of a trans-himalayan dryland BT - human impact and aridification JF - Geophysical research letters N2 - Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services. KW - geomorphology KW - paleoclimate KW - human activity KW - Tibetan plateau KW - late Holocene Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084192 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13814 EP - 13824 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Scheingross, Joel S. A1 - Hovius, Niels A1 - Dellinger, M. A1 - Hilton, R. G. A1 - Repasch, M. A1 - Sachse, Dirk A1 - Grocke, D. R. A1 - Vieth-Hillebrand, Andrea A1 - Turowski, Jens M. T1 - Preservation of organic carbon during active fluvial transport and particle abrasion JF - Geology N2 - Oxidation of particulate organic carbon (POC) during fluvial transit releases CO2 to the atmosphere and can influence global climate. Field data show large POC oxidation fluxes in lowland rivers; however, it is unclear if POC losses occur predominantly during in-river transport, where POC is in continual motion within an aerated environment, or during transient storage in floodplains, which may be anoxic. Determination of the locus of POC oxidation in lowland rivers is needed to develop process-based models to predict POC losses, constrain carbon budgets, and unravel links between climate and erosion. However, sediment exchange between rivers and floodplains makes differentiating POC oxidation during in-river transport from oxidation during floodplain storage difficult. Here, we isolated inriver POC oxidation using flume experiments transporting petrogenic and biospheric POC without floodplain storage. Our experiments showed solid phase POC losses of 0%-10% over similar to 10(3) km of fluvial transport, compared to similar to 7% to >50% losses observed in rivers over similar distances. The production of dissolved organic carbon (DOC) and dissolved rhenium (a proxy for petrogenic POC oxidation) was consistent with small POC lasses, and replicate experiments in static water tanks gave similar results. Our results show that fluvial sediment transport, particle abrasion, and turbulent mixing have a minimal role on POC oxidation, and they suggest that POC losses may accrue primarily in floodplain storage. Y1 - 2019 U6 - https://doi.org/10.1130/G46442.1 SN - 0091-7613 SN - 1943-2682 VL - 47 IS - 10 SP - 958 EP - 962 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Meese, Bernd A1 - Bookhagen, Bodo A1 - Olen, Stephanie M. A1 - Barthold, Frauke Katrin A1 - Sachse, Dirk T1 - The effect of Indian Summer Monsoon rainfall on surface water delta D values in the central Himalaya JF - Hydrological processes N2 - Stable isotope proxy records, such as speleothems, plant-wax biomarker records, and ice cores, are suitable archives for the reconstruction of regional palaeohydrologic conditions. But the interpretation of these records in the tropics, especially in the Indian Summer Monsoon (ISM) domain, is difficult due to differing moisture and water sources: precipitation from the ISM and Winter Westerlies, as well as snow- and glacial meltwater. In this study, we use interannual differences in ISM strength (2011-2012) to understand the stable isotopic composition of surface water in the Arun River catchment in eastern Nepal. We sampled main stem and tributary water (n = 204) for stable hydrogen and oxygen isotope analysis in the postmonsoon phase of two subsequent years with significantly distinct ISM intensities. In addition to the 2011/2012 sampling campaigns, we collected a 12-month time series of main stem waters (2012/2013, n = 105) in order to better quantify seasonal effects on the variability of surface water delta O-18/delta D. Furthermore, remotely sensed satellite data of rainfall, snow cover, glacial coverage, and evapotranspiration was evaluated. The comparison of datasets from both years revealed that surface waters of the main stem Arun and its tributaries were D-enriched by similar to 15 parts per thousand when ISM rainfall decreased by 20%. This strong response emphasizes the importance of the ISM for surface water run-off in the central Himalaya. However, further spatio-temporal analysis of remote sensing data in combination with stream water d-excess revealed that most high-altitude tributaries and the Tibetan part of the Arun receive high portions of glacial melt water and likely Winter Westerly Disturbances precipitation. We make the following two implications: First, palaeohydrologic archives found in high-altitude tributaries and on the southern Tibetan Plateau record a mixture of past precipitation delta D values and variable amounts of additional water sources. Second, surface water isotope ratios of lower elevated tributaries strongly reflect the isotopic composition of ISM rainfall implying a suitable region for the analysis of potential delta D value proxy records. KW - Himalaya KW - palaeoclimate records KW - snow melt KW - stream water KW - water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/hyp.13281 SN - 0885-6087 SN - 1099-1085 VL - 32 IS - 24 SP - 3662 EP - 3674 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Garcin, Yannick A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - de Saulieu, Geoffroy A1 - Schefuss, Enno A1 - Sebag, David A1 - Dupont, Lydie M. A1 - Oslisly, Richard A1 - Brademann, Brian A1 - Mbusnum, Kevin G. A1 - Onana, Jean-Michel A1 - Ako, Andrew A. A1 - Epp, Laura Saskia A1 - Tjallingii, Rik A1 - Strecker, Manfred A1 - Brauer, Achim A1 - Sachse, Dirk T1 - Early anthropogenic impact on Western Central African rainforests 2,600 y ago JF - Proceedings of the National Academy of Sciences of the United States of America N2 - A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the "rainforest crisis" to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. delta C-13-inferred vegetation changes confirm a prominent and abrupt appearance of C-4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. delta D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era. KW - Western Central Africa KW - late Holocene KW - rainforest crisis KW - paleohydrology KW - human activity Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1715336115 SN - 0027-8424 VL - 115 IS - 13 SP - 3261 EP - 3266 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Garcin, Yannick A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - de Saulieu, Geoffroy A1 - Schefuss, Enno A1 - Sebag, David A1 - Dupont, Lydie M. A1 - Oslisly, Richard A1 - Brademann, Brian A1 - Mbusnum, Kevin G. A1 - Onana, Jean-Michel A1 - Ako, Andrew A. A1 - Epp, Laura Saskia A1 - Tjallingii, Rik A1 - Strecker, Manfred A1 - Brauer, Achim A1 - Sachse, Dirk T1 - No evidence for climate variability during the late Holocene rainforest crisis in Western Central Africa REPLY T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1808481115 SN - 0027-8424 VL - 115 IS - 29 SP - E6674 EP - E6675 PB - National Acad. of Sciences CY - Washington ER -