TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Dietze, Michael A1 - Swoboda, Charlie A1 - Cook, Kristen L. A1 - Adhikari, Basanta R. A1 - Vieth-Hillebrand, Andrea A1 - Bonnet, Stephane A1 - Reimann, Tony A1 - Koutsodendris, Andreas A1 - Sachse, Dirk T1 - Late holocene landscape collapse of a trans-himalayan dryland BT - human impact and aridification JF - Geophysical research letters N2 - Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services. KW - geomorphology KW - paleoclimate KW - human activity KW - Tibetan plateau KW - late Holocene Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084192 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13814 EP - 13824 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Lupker, Maarten A1 - Haghipour, Negar A1 - Märki, Lena A1 - Sachse, Dirk T1 - Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates. KW - particulate organic carbon KW - Himalaya KW - rivers KW - carbon cycle KW - stable KW - isotopes KW - erosion KW - end-member mixing Y1 - 2020 U6 - https://doi.org/10.1016/j.gca.2020.07.003 SN - 0016-7037 VL - 286 SP - 159 EP - 176 PB - Elsevier CY - New York [u.a.] ER -