TY - JOUR A1 - Kotha, Sreeram Reddy A1 - Cotton, Fabrice A1 - Bindi, Dino T1 - A new approach to site classification BT - Mixed-effects Ground Motion Prediction Equation with spectral clustering of site amplification functions JF - Soil Dynamics and Earthquake Engineering N2 - With increasing amount of strong motion data, Ground Motion Prediction Equation (GMPE) developers are able to quantify empirical site amplification functions (delta S2S(s)) from GMPE residuals, for use in site-specific Probabilistic Seismic Hazard Assessment. In this study, we first derive a GMPE for 5% damped Pseudo Spectral Acceleration (g) of Active Shallow Crustal earthquakes in Japan with 3.4 <= M-w <= 7.3 and 0 <= R-JB <= 600km. Using k-mean spectral clustering technique, we then classify our estimated delta S2S(s)(T = 0.01 - 2s) of 588 wellcharacterized sites, into 8 site clusters with distinct mean site amplification functions, and within-cluster site-tosite variability similar to 50% smaller than the overall dataset variability (phi(S2S)). Following an evaluation of existing schemes, we propose a revised data-driven site classification characterized by kernel density distributions of V-s30, V-s10, H-800, and predominant period (T-G) of the site clusters. KW - Mixed-effects regression KW - Ground Motion Prediction Equation KW - Site classification KW - Spectral clustering analysis KW - Empirical site amplification functions Y1 - 2018 U6 - https://doi.org/10.1016/j.soildyn.2018.01.051 SN - 0267-7261 SN - 1879-341X VL - 110 SP - 318 EP - 329 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kotha, Sreeram Reddy A1 - Weatherill, Graeme A1 - Bindi, Dino A1 - Cotton, Fabrice T1 - Near-source magnitude scaling of spectral accelerations BT - analysis and update of Kotha et al. (2020) model JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - Ground-motion models (GMMs) are often used to predict the random distribution of Spectral accelerations (SAs) at a site due to a nearby earthquake. In probabilistic seismic hazard and risk assessment, large earthquakes occurring close to a site are considered as critical scenarios. GMMs are expected to predict realistic SAs with low within-model uncertainty (sigma(mu)) for such rare scenarios. However, the datasets used to regress GMMs are usually deficient of data from critical scenarios. The (Kotha et al., A Regionally Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe Bulletin of Earthquake Engineering 18:4091-4125, 2020) GMM developed from the Engineering strong motion (ESM) dataset was found to predict decreasing short-period SAs with increasing M-W >= M-h = 6.2, and with large sigma(mu) at near-source distances <= 30km. In this study, we updated the parametrisation of the GMM based on analyses of ESM and the Near source strong motion (NESS) datasets. With M-h = 5.7, we could rectify the M-W scaling issue, while also reducing sigma(mu). at M-W >= M-h. We then evaluated the GMM against NESS data, and found that the SAs from a few large, thrust-faulting events in California, New Zealand, Japan, and Mexico are significantly higher than GMM median predictions. However, recordings from these events were mostly made on soft-soil geology, and contain anisotropic pulse-like effects. A more thorough non-ergodic treatment of NESS was not possible because most sites sampled unique events in very diverse tectonic environments. We provide an updated set of GMM coefficients,sigma(mu), and heteroscedastic variance models; while also cautioning against its application for M-W <= 4 in low-moderate seismicity regions without evaluating the homogeneity of M-W estimates between pan-European ESM and regional datasets. KW - Ground-motion model KW - Spectral accelerations KW - Magnitude scalin KW - Near-source saturation KW - Within-model uncertainty KW - Heteroscedastic KW - variability Y1 - 2022 U6 - https://doi.org/10.1007/s10518-021-01308-5 SN - 1570-761X SN - 1573-1456 VL - 20 IS - 3 SP - 1343 EP - 1370 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Di Giacomo, Domenico A1 - Bindi, Dino A1 - Parolai, Stefano A1 - Oth, Adrien T1 - Residual analysis of teleseismic P-wave energy magnitude estimates: inter- and intrastation variability JF - Geophysical journal international N2 - P>Computing the magnitude of an earthquake requires correcting for the propagation effects from the source to the receivers. This is often accomplished by performing numerical simulations using a suitable Earth model. In this work, the energy magnitude M(e) is considered and its determination is performed using theoretical spectral amplitude decay functions over teleseismic distances based on the global Earth model AK135Q. Since the high frequency part (above the corner frequency) of the source spectrum has to be considered in computing M(e), the influence of propagation and site effects may not be negligible and they could bias the single station M(e) estimations. Therefore, in this study we assess the inter- and intrastation distributions of errors by considering the M(e) residuals computed for a large data set of earthquakes recorded at teleseismic distances by seismic stations deployed worldwide. To separate the inter- and intrastation contribution of errors, we apply a maximum likelihood approach to the M(e) residuals. We show that the interstation errors (describing a sort of site effect for a station) are within +/- 0.2 magnitude units for most stations and their spatial distribution reflects the expected lateral variation affecting the velocity and attenuation of the Earth's structure in the uppermost layers, not accounted for by the 1-D AK135Q model. The variance of the intrastation error distribution (describing the record-to-record component of variability) is larger than the interstation one (0.240 against 0.159), and the spatial distribution of the errors is not random but shows specific patterns depending on the source-to-station paths. The set of coefficients empirically determined may be used in the future to account for the heterogeneities of the real Earth not considered in the theoretical calculations of the spectral amplitude decay functions used to correct the recorded data for propagation effects. KW - Time series analysis KW - Earthquake source observations KW - Body waves KW - Site effects KW - Wave propagation Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2011.05019.x SN - 0956-540X VL - 185 IS - 3 SP - 1444 EP - 1454 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Douglas, John A1 - Akkar, Sinan A1 - Ameri, Gabriele A1 - Bard, Pierre-Yves A1 - Bindi, Dino A1 - Bommer, Julian J. A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Derras, Boumediene A1 - Hermkes, Marcel A1 - Kuehn, Nicolas Martin A1 - Luzi, Lucia A1 - Massa, Marco A1 - Pacor, Francesca A1 - Riggelsen, Carsten A1 - Sandikkaya, M. Abdullah A1 - Scherbaum, Frank A1 - Stafford, Peter J. A1 - Traversa, Paola T1 - Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan. KW - Strong-motion data KW - Ground-motion models KW - Ground-motion prediction equations KW - Style of faulting KW - Site amplification KW - Aleatory variability KW - Epistemic uncertainty KW - Europe KW - Middle East Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9522-8 SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 341 EP - 358 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zaccarelli, Riccardo A1 - Bindi, Dino A1 - Strollo, Angelo A1 - Quinteros, Javier A1 - Cotton, Fabrice T1 - Stream2segment: An Open-Source Tool for Downloading, Processing, and Visualizing Massive Event-Based Seismic Waveform Datasets JF - Seismological research letters N2 - The task of downloading comprehensive datasets of event-based seismic waveforms has been made easier through the development of standardized webservices but is still highly nontrivial because the likelihood of temporary network failures or subtle data errors naturally increases when the amount of requested data is in the order of millions of relatively short segments. This is even more challenging because the typical workflow is not restricted to a single massive download but consists of fetching all possible available input data (e.g., with several repeated download executions) for a processing stage producing any desired user-defined output. Here, we present stream2segment, a highly customizable Python 2+3 package helping the user in the entire workflow of downloading, inspecting, and processing event-based seismic data by means of a relational database management system as archiving storage, which has clear performance and usability advantages, and an integrated processing subroutine requiring a configuration file and a single Python function to produce user-defined output. Stream2segment can also produce diagnostic maps or user-defined plots, which, unlike existing tools, do not require external software dependencies and are not static images but instead are interactive browser-based applications ideally suited for data inspection or annotation tasks and subsequent training of classifiers in foreseen supervised machine-learning applications. Stream2segment has already been used as a data quality tool for datasets within the European Integrated Data Archive and to create a weak-motion database (in the form of a so-called flat file) for the stable continental region of Europe in the context of the European Ground Shaking Intensity Model service, in turn an important building block for seismic hazard studies. Y1 - 2019 U6 - https://doi.org/10.1785/0220180314 SN - 0895-0695 SN - 1938-2057 VL - 90 IS - 5 SP - 2028 EP - 2038 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Bindi, Dino A1 - Spallarossa, D. A1 - Picozzi, M. A1 - Scafidi, D. A1 - Cotton, Fabrice T1 - Impact of magnitude selection on aleatory variability associated with ground-motion prediction equations BT - Part I-Local, Energy, and Moment Magnitude Calibration and Stress-Drop Variability in Central Italy JF - Bulletin of the Seismological Society of America N2 - In this study, we analyzed 10 yrs of seismicity in central Italy from 2008 to 2017, a period witnessing more than 1400 earthquakes in the magnitude range 2.5≤Mw≤6.5⁠. The data set includes the main sequences that have occurred in the area, including those associated with the 2009 Mw 6.3 L'Aquila earthquake and the 2016–2017 sequence (⁠Mw 6.2 Amatrice, Mw 6.1 Visso, and Mw 6.5 Norcia earthquakes). We calibrated a local magnitude scale, investigating the impact of changing the reference distance at which the nonparametric attenuation is tied to the zero‐magnitude attenuation function for southern California. We also developed an attenuation model to compute the radiated seismic energy (⁠Es⁠) from the time integral of the squared ground‐motion velocity. Seismic moment (⁠M0⁠) and stress drop (⁠Δσ⁠) were estimated for each earthquake by fitting a ω‐square model to the source spectra obtained by applying a nonparametric spectral inversion. The Δσ‐values vary over three orders of magnitude from about 0.1 to 10 MPa, the larger values associated with the mainshocks. The Δσ‐values describe a lognormal distribution with mean and standard deviation equal to log(Δσ)=(−0.25±0.45) (i.e., the mean Δσ is 0.57 MPa, with a 95% confidence interval from 0.08 to 4.79 MPa). The Δσ variability introduces a spread in the distribution of seismic energy versus moment, with differences in energy up two orders of magnitudes for earthquakes with the same moment. The variability in the high‐frequency spectral levels is captured by the local magnitude (⁠ML⁠), which scales with radiated energy as ML=(−1.59+0.52logEs) for logEs≤10.26 and ML=(−1.38+0.50logEs) otherwise. As the peak ground velocity increases with increasing Δσ⁠, local and energy magnitudes perform better than moment magnitude as predictors for the shaking potential. The availability of different magnitude scales and source parameters for a large earthquake population will help characterize the between‐event ground‐motion variability in central Italy. Y1 - 2018 U6 - https://doi.org/10.1785/0120170356 SN - 0037-1106 SN - 1943-3573 VL - 108 IS - 3A SP - 1427 EP - 1442 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Bindi, Dino A1 - Kotha, Sreeram Reddy A1 - Weatherill, Graeme A1 - Lanzano, Giovanni A1 - Luzi, Lucia A1 - Cotton, Fabrice T1 - The pan-European engineering strong motion (ESM) flatfile BT - consistency check via residual analysis JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - We present the results of a consistency check performed over the flatfile extracted from the engineering strong motion (ESM) database. The flatfile includes 23,014 recordings from 2179 earthquakes in the magnitude range from 3.5 to 7.8 that occurred since the 1970s in Europe and Middle East, as presented in the companion article by Lanzano et al. (Bull Earthq Eng, 2018a). The consistency check is developed by analyzing different residual distributions obtained from ad-hoc ground motion prediction equations for the absolute spectral acceleration (SA), displacement and Fourier amplitude spectra (FAS). Only recordings from earthquakes shallower than 40 km are considered in the analysis. The between-event, between-station and event-and-station corrected residuals are computed by applying a mixed-effect regression. We identified those earthquakes, stations, and recordings showing the largest deviations from the GMPE median predictions, and also evaluated the statistical uncertainty on the median model to get insights on the applicable magnitude–distance ranges and the usable period (or frequency) range. We observed that robust median predictions are obtained up to 8 s for SA and up to 20 Hz for FAS, although median predictions for Mw ≥ 7 show significantly larger uncertainties with ‘bumps’ starting above 5 s for SA and below 0.3 Hz for FAS. The between-station variance dominates over the other residual variances, and the dependence of the between-station residuals on logarithm of Vs30 is well-described by a piece-wise linear function with period-dependent slopes and hinge velocity around 580 m/s. Finally, we compared the between-event residuals obtained by considering two different sources of moment magnitude. The results show that, at long periods, the between-event terms from the two regressions have a weak correlation and the overall between-event variability is dissimilar, highlighting the importance of magnitude source in the regression results. KW - Ground motion prediction equation KW - Residual analysis KW - European strong motion data Y1 - 2018 U6 - https://doi.org/10.1007/s10518-018-0466-x SN - 1570-761X SN - 1573-1456 VL - 17 IS - 2 SP - 583 EP - 602 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zöller, Gert A1 - Ullah, Shahid A1 - Bindi, Dino A1 - Parolai, Stefano A1 - Mikhailova, Natalya T1 - The largest expected earthquake magnitudes in Central Asia BT - statistical inference from an earthquake catalogue with uncertain magnitudes JF - Seismicity, fault rupture and earthquake hazards in slowly deforming regions N2 - The knowledge of the largest expected earthquake magnitude in a region is one of the key issues in probabilistic seismic hazard calculations and the estimation of worst-case scenarios. Earthquake catalogues are the most informative source of information for the inference of earthquake magnitudes. We analysed the earthquake catalogue for Central Asia with respect to the largest expected magnitudes m(T) in a pre-defined time horizon T-f using a recently developed statistical methodology, extended by the explicit probabilistic consideration of magnitude errors. For this aim, we assumed broad error distributions for historical events, whereas the magnitudes of recently recorded instrumental earthquakes had smaller errors. The results indicate high probabilities for the occurrence of large events (M >= 8), even in short time intervals of a few decades. The expected magnitudes relative to the assumed maximum possible magnitude are generally higher for intermediate-depth earthquakes (51-300 km) than for shallow events (0-50 km). For long future time horizons, for example, a few hundred years, earthquakes with M >= 8.5 have to be taken into account, although, apart from the 1889 Chilik earthquake, it is probable that no such event occurred during the observation period of the catalogue. Y1 - 2017 SN - 978-1-86239-745-3 SN - 978-1-86239-964-8 U6 - https://doi.org/10.1144/SP432.3 SN - 0305-8719 VL - 432 SP - 29 EP - 40 PB - The Geological Society CY - London ER - TY - JOUR A1 - Grünthal, Gottfried A1 - Stromeyer, Dietrich A1 - Bosse, Christian A1 - Cotton, Fabrice A1 - Bindi, Dino T1 - The probabilistic seismic hazard assessment of Germany-version 2016, considering the range of epistemic uncertainties and aleatory variability JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of nu(S30) = 800 m/s, are calculated for three hazard levels (10, 5 and 2% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02-3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized. KW - Seismic hazard KW - Germany KW - DIN EN 1998-1/NA KW - Seismic load parameters Y1 - 2018 U6 - https://doi.org/10.1007/s10518-018-0315-y SN - 1570-761X SN - 1573-1456 VL - 16 IS - 10 SP - 4339 EP - 4395 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Grünthal, Gottfried A1 - Stromeyer, Dietrich A1 - Bosse, Christian A1 - Cotton, Fabrice A1 - Bindi, Dino T1 - Correction to: The probabilistic seismic hazard assessment of Germanyversion 2016, considering the range of epistemic uncertainties and aleatory variability (vol 16, pg 4339, 2018) T2 - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - One paragraph of the manuscript of the paper has been inadvertently omitted in the very final stage of its compilation due to a technical mistake. Since this paragraph discusses the declustering of the used earthquake catalogue and is therefore necessary for the understanding of the seismicity data preprocessing, the authors decided to provide this paragraph in form of a correction. The respective paragraph belongs to chapter 2 of the paper, where it was placed originally, and should be inserted into the published paper before the second to the last paragraph. The omitted text reads as follows: Y1 - 2918 U6 - https://doi.org/10.1007/s10518-018-0398-5 SN - 1570-761X SN - 1573-1456 VL - 16 IS - 10 SP - 4397 EP - 4398 PB - Springer CY - Dordrecht ER -