TY - JOUR A1 - Baessler, Olivia Y. A1 - Weiss, Julia A1 - Wienkoop, Stefanie A1 - Lehmann, Karola A1 - Scheler, Christian A1 - Doelle, Sabine A1 - Schwarz, Dietmar A1 - Franken, Philipp A1 - George, Eckhard A1 - Worm, Margitta A1 - Weckwerth, Wolfram T1 - Evidence for novel tomato seed allergens : IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling N2 - Tomato fruit and seed allergens were detected by IgE-immunoblotting using sera from 18 adult tomato-sensitized patients selected based on a positive history skin prick test (SPT) and specific Immunglobulin (Ig) E-levels. Isolated tomato seed total protein showed high SPT activity comparable or even higher than tomato fruit protein. For the molecular characterization of tomato seed allergens, a multidimensional protein fractionation strategy and LC-MS/MS was used. Two legumin- and vicilin-proteins were purified and showed strong IgE-reactivity in immunoblots. Individual patient sera exhibited varying IgE-sensitivity against the purified proteins. In silico structural modeling indicates high homology between epitopes of known walnut allergens and the detected IgE-crossreactive tomato proteins. Y1 - 2009 UR - http://pubs.acs.org/journal/jprobs U6 - https://doi.org/10.1021/Pr800186d SN - 1535-3893 ER - TY - JOUR A1 - Biermann, Robin Tim A1 - Bach, Linh T. A1 - Kläring, Hans-Peter A1 - Baldermann, Susanne A1 - Börnke, Frederik A1 - Schwarz, Dietmar T1 - Discovering tolerance-A computational approach to assess abiotic stress tolerance in tomato under greenhouse conditions JF - Frontiers in sustainable food systems N2 - Modern plant cultivars often possess superior growth characteristics, but within a limited range of environmental conditions. Due to climate change, crops will be exposed to distressing abiotic conditions more often in the future, out of which heat stress is used as example for this study. To support identification of tolerant germplasm and advance screening techniques by a novel multivariate evaluation method, a diversity panel of 14 tomato genotypes, comprising Mediterranean landraces of Solanum lycopersicum, the cultivar "Moneymaker" and Solanum pennellii LA0716, which served as internal references, was assessed toward their tolerance against long-term heat stress. After 5 weeks of growth, young tomato plants were exposed to either control (22/18 degrees C) or heat stress (35/25 degrees C) conditions for 2 weeks. Within this period, water consumption, leaf angles and leaf color were determined. Additionally, gas exchange and leaf temperature were investigated. Finally, biomass traits were recorded. The resulting multivariate dataset on phenotypic plasticity was evaluated to test the hypothesis, that more tolerant genotypes have less affected phenotypes upon stress adaptation. For this, a cluster-analysis-based approach was developed that involved a principal component analysis (PCA), dimension reduction and determination of Euclidean distances. These distances served as measure for the phenotypic plasticity upon heat stress. Statistical evaluation allowed the identification and classification of homogeneous groups consisting each of four putative more or less heat stress tolerant genotypes. The resulting classification of the internal references as "tolerant" highlights the applicability of our proposed tolerance assessment model. PCA factor analysis on principal components 1-3 which covered 76.7% of variance within the phenotypic data, suggested that some laborious measure such as the gas exchange might be replaced with the determination of leaf temperature in larger heat stress screenings. Hence, the overall advantage of the presented method is rooted in its suitability of both, planning and executing screenings for abiotic stress tolerance using multivariate phenotypic data to overcome the challenge of identifying abiotic stress tolerant plants from existing germplasms and promote sustainable agriculture for the future. KW - abiotic stress KW - breeding KW - heat stress KW - phenotyping KW - Solanum KW - lycopersicum KW - screening KW - stress tolerance Y1 - 2022 U6 - https://doi.org/10.3389/fsufs.2022.878013 SN - 2571-581X VL - 6 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wiesner-Reinhold, Melanie A1 - Schreiner, Monika A1 - Baldermann, Susanne A1 - Schwarz, Dietmar A1 - Hanschen, Franziska S. A1 - Kipp, Anna Patricia A1 - Rowan, Daryl D. A1 - Bentley-Hewitt, Kerry L. A1 - McKenzie, Marian J. T1 - Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health JF - Frontiers in plant science N2 - Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future. KW - Brassica vegetables KW - selenium KW - biofortification KW - glucosinolates KW - human health KW - immune system KW - cancer KW - analytical methods Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.01365 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER -