TY - JOUR A1 - Soliveres, Santiago A1 - Maestre, Fernando T. A1 - Ulrich, Werner A1 - Manning, Peter A1 - Boch, Steffen A1 - Bowker, Matthew A. A1 - Prati, Daniel A1 - Delgado-Baquerizo, Manuel A1 - Quero, Jose L. A1 - Schöning, Ingo A1 - Gallardo, Antonio A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Garcia-Gomez, Miguel A1 - Ochoa, Victoria A1 - Schulze, Ernst-Detlef A1 - Fischer, Markus A1 - Allan, Eric T1 - Intransitive competition is widespread in plant communities and maintains their species richness JF - Ecology letters N2 - Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in >65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation. KW - Aridity KW - biodiversity KW - coexistence KW - drylands KW - land use KW - mesic grasslands KW - rock-paper-scissors game Y1 - 2015 U6 - https://doi.org/10.1111/ele.12456 SN - 1461-023X SN - 1461-0248 VL - 18 IS - 8 SP - 790 EP - 798 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Soliveres, Santiago A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Bluethgen, Nico A1 - Boch, Steffen A1 - Boehm, Stefan A1 - Boerschig, Carmen A1 - Buscot, Francois A1 - Diekoetter, Tim A1 - Heinze, Johannes A1 - Hoelzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra-Maria A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Mueller, Joerg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schoening, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Tuerke, Manfred A1 - Venter, Paul A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Locally rare species influence grassland ecosystem multifunctionality JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. KW - biodiversity KW - common species KW - ecosystem function KW - identity hypothesis KW - land use KW - multitrophic Y1 - 2016 U6 - https://doi.org/10.1098/rstb.2015.0269 SN - 0962-8436 SN - 1471-2970 VL - 371 SP - 3175 EP - 3185 PB - Royal Society CY - London ER -