TY - GEN A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Taheri, Abbas A1 - Schöpfer, Martin P. J. A1 - Emam, Sacha A1 - Dahm, Torsten T1 - Geomechanical modelling of sinkhole development using distinct elements BT - model verification for a single void space and application to the Dead Sea area T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth ∕ diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth ∕ diameter values in each material type may partly reflect sinkhole growth trends. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1061 KW - rock mass KW - karst KW - dissolution KW - reflection KW - subsidence KW - subrosion KW - collapse KW - simulation KW - scale KW - fault Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468435 SN - 1866-8372 IS - 1061 ER - TY - JOUR A1 - Passarelli, Luigi A1 - Hainzl, Sebastian A1 - Cesca, Simone A1 - Maccaferri, Francesco A1 - Mucciarelli, Marco A1 - Rößler, Dirk A1 - Corbi, Fabio A1 - Dahm, Torsten A1 - Rivalta, Eleonora T1 - Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy JF - Geophysical journal international N2 - Tectonic earthquake swarms challenge our understanding of earthquake processes since it is difficult to link observations to the underlying physical mechanisms and to assess the hazard they pose. Transient forcing is thought to initiate and drive the spatio-temporal release of energy during swarms. The nature of the transient forcing may vary across sequences and range from aseismic creeping or transient slip to diffusion of pore pressure pulses to fluid redistribution and migration within the seismogenic crust. Distinguishing between such forcing mechanisms may be critical to reduce epistemic uncertainties in the assessment of hazard due to seismic swarms, because it can provide information on the frequency-magnitude distribution of the earthquakes (often deviating from the assumed Gutenberg-Richter relation) and on the expected source parameters influencing the ground motion (for example the stress drop). Here we study the ongoing Pollino range (Southern Italy) seismic swarm, a long-lasting seismic sequence with more than five thousand events recorded and located since October 2010. The two largest shocks (magnitude M-w = 4.2 and M-w = 5.1) are among the largest earthquakes ever recorded in an area which represents a seismic gap in the Italian historical earthquake catalogue. We investigate the geometrical, mechanical and statistical characteristics of the largest earthquakes and of the entire swarm. We calculate the focal mechanisms of the M-l > 3 events in the sequence and the transfer of Coulomb stress on nearby known faults and analyse the statistics of the earthquake catalogue. We find that only 25 per cent of the earthquakes in the sequence can be explained as aftershocks, and the remaining 75 per cent may be attributed to a transient forcing. The b-values change in time throughout the sequence, with low b-values correlated with the period of highest rate of activity and with the occurrence of the largest shock. In the light of recent studies on the palaeoseismic and historical activity in the Pollino area, we identify two scenarios consistent with the observations and our analysis: This and past seismic swarms may have been 'passive' features, with small fault patches failing on largely locked faults, or may have been accompanied by an 'active', largely aseismic, release of a large portion of the accumulated tectonic strain. Those scenarios have very different implications for the seismic hazard of the area. KW - Seismicity and tectonics KW - Statistical seismology KW - Dynamics: seismotectonics Y1 - 2015 U6 - https://doi.org/10.1093/gji/ggv111 SN - 0956-540X SN - 1365-246X VL - 201 IS - 3 SP - 1553 EP - 1567 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Cesca, Simone A1 - Braun, Thomas A1 - Maccaferri, Francesco A1 - Passarelli, Luigi A1 - Rivalta, Eleonora A1 - Dahm, Torsten T1 - Source modelling of the M5-6 Emilia-Romagna, Italy, earthquakes (2012 May 20-29) JF - Geophysical journal international N2 - On 2012 May 20 and 29, two damaging earthquakes with magnitudes M-w 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with M-w, >= 5.0, all at shallow depths (about 7-9 km), with similar WNW-ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2-0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate M-w = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock. KW - Earthquake dynamics KW - Earthquake source observations Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt069 SN - 0956-540X VL - 193 IS - 3 SP - 1658 EP - 1672 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Passarelli, Luigi A1 - Hainzl, Sebastian A1 - Cesca, Simone A1 - Maccaferri, Francesco A1 - Mucciarelli, Marco A1 - Roessler, Dirk A1 - Corbi, Fabio A1 - Dahm, Torsten A1 - Rivalta, Eleonora T1 - Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy (vol 201, pg 1553, 2015) T2 - Geophysical journal international KW - Seismicity and tectonics KW - Statistical seismology KW - Dynamics: seismotectonics Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggv425 SN - 0956-540X SN - 1365-246X VL - 204 SP - 365 EP - 365 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Nooshiri, Nima A1 - Bean, Christopher J. A1 - Dahm, Torsten A1 - Grigoli, Francesco A1 - Kristjansdottir, Sigriour A1 - Obermann, Anne A1 - Wiemer, Stefan T1 - A multibranch, multitarget neural network for rapid point-source inversion in a microseismic environment BT - examples from the Hengill Geothermal Field, Iceland JF - Geophysical journal international N2 - Despite advanced seismological techniques, automatic source characterization for microseismic earthquakes remains difficult and challenging since current inversion and modelling of high-frequency signals are complex and time consuming. For real-time applications such as induced seismicity monitoring, the application of standard methods is often not fast enough for true complete real-time information on seismic sources. In this paper, we present an alternative approach based on recent advances in deep learning for rapid source-parameter estimation of microseismic earthquakes. The seismic inversion is represented in compact form by two convolutional neural networks, with individual feature extraction, and a fully connected neural network, for feature aggregation, to simultaneously obtain full moment tensor and spatial location of microseismic sources. Specifically, a multibranch neural network algorithm is trained to encapsulate the information about the relationship between seismic waveforms and underlying point-source mechanisms and locations. The learning-based model allows rapid inversion (within a fraction of second) once input data are available. A key advantage of the algorithm is that it can be trained using synthetic seismic data only, so it is directly applicable to scenarios where there are insufficient real data for training. Moreover, we find that the method is robust with respect to perturbations such as observational noise and data incompleteness (missing stations). We apply the new approach on synthesized and example recorded small magnitude (M <= 1.6) earthquakes at the Hellisheioi geothermal field in the Hengill area, Iceland. For the examined events, the model achieves excellent performance and shows very good agreement with the inverted solutions determined through standard methodology. In this study, we seek to demonstrate that this approach is viable for microseismicity real-time estimation of source parameters and can be integrated into advanced decision-support tools for controlling induced seismicity. KW - Neural networks KW - fuzzy logic KW - Computational seismology KW - Induced seismicity KW - Earthquake source observations Y1 - 2021 U6 - https://doi.org/10.1093/gji/ggab511 SN - 0956-540X SN - 1365-246X VL - 229 IS - 2 SP - 999 EP - 1016 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zang, Arno A1 - Stephansson, Ove A1 - Stenberg, Leif A1 - Plenkers, Katrin A1 - von Specht, Sebastian A1 - Milkereit, Claus A1 - Schill, Eva A1 - Kwiatek, Grzegorz A1 - Dresen, Georg A1 - Zimmermann, Günter A1 - Dahm, Torsten A1 - Weber, Michael T1 - Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array JF - Geophysical journal international N2 - In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization. KW - Geomechanics KW - Fracture and flow KW - Broad-band seismometers Y1 - 2016 SN - 0956-540X SN - 1365-246X VL - 208 SP - 790 EP - 813 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Cesca, Simone A1 - Grigoli, Francesco A1 - Heimann, Sebastian A1 - Dahm, Torsten A1 - Kriegerowski, Marius A1 - Sobiesiak, M. A1 - Tassara, C. A1 - Olcay, M. T1 - The M-w 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks JF - Geophysical journal international N2 - The 2014 April 1, M-w 8.1 Iquique (Chile) earthquake struck in the Northern Chile seismic gap. With a rupture length of less than 200 km, it left unbroken large segments of the former gap. Early studies were able to model the main rupture features but results are ambiguous with respect to the role of aseismic slip and left open questions on the remaining hazard at the Northern Chile gap. A striking observation of the 2014 earthquake has been its extensive preparation phase, with more than 1300 events with magnitude above M-L 3, occurring during the 15 months preceding the main shock. Increasing seismicity rates and observed peak magnitudes accompanied the last three weeks before the main shock. Thanks to the large data sets of regional recordings, we assess the precursor activity, compare foreshocks and aftershocks and model rupture preparation and rupture effects. To tackle inversion challenges for moderate events with an asymmetric network geometry, we use full waveforms techniques to locate events, map the seismicity rate and derive source parameters, obtaining moment tensors for more than 300 events (magnitudes M-w 4.0-8.1) in the period 2013 January 1-2014 April 30. This unique data set of fore- and aftershocks is investigated to distinguish rupture process models and models of strain and stress rotation during an earthquake. Results indicate that the spatial distributions of foreshocks delineated the shallower part of the rupture areas of the main shock and its largest aftershock, well matching the spatial extension of the aftershocks cloud. Most moment tensors correspond to almost pure double couple thrust mechanisms, consistent with the slab orientation. Whereas no significant differences are observed among thrust mechanisms in different areas, nor among thrust foreshocks and aftershocks, the early aftershock sequence is characterized by the presence of normal fault mechanisms, striking parallel to the trench but dipping westward. These events likely occurred in the shallow wedge structure close to the slab interface and are consequence of the increased extensional stress in this region after the largest events. The overall stress inversion result suggests a minor stress rotation after the main shock, but a significant release of the deviatoric stress. The temporal change in the distribution of focal mechanisms can also be explained in terms of the spatial heterogeneity of the stress field: under such interpretation, the potential of a large megathrust earthquake breaking a larger segment offshore Northern Chile remains high. KW - Earthquake source observations KW - South America Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggv544 SN - 0956-540X SN - 1365-246X VL - 204 SP - 1766 EP - 1780 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Kriegerowski, Marius A1 - Cesca, Simone A1 - Ohrnberger, Matthias A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Event couple spectral ratio Q method for earthquake clusters BT - application to northwest Bohemia T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q-1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high-frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wave-field seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to northwest Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp < 100. The application to S phases fails due to scattered P-phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly fractured and fluid saturated rocks in the source region of the swarms in northwest Bohemia. However, high temperatures in a small volume around the swarms cannot be excluded to explain our observations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 683 KW - west bohemia KW - attenuation tomography KW - swarm earthquakes KW - focal zone KW - parameters KW - locations KW - fault Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426029 IS - 683 ER - TY - GEN A1 - Polom, Ulrich A1 - Alrshdan, Hussam A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Dahm, Torsten A1 - Sawarieh, Ali A1 - Atallah, Mohamad Y. A1 - Krawczyk, Charlotte M. T1 - Shear wave reflection seismic yields subsurface dissolution and subrosion patterns BT - application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2–10 m) compacted salt layer formerly suggested to lie at ca. 35–40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 979 KW - salt dissolution KW - hazard KW - coast KW - area KW - subsidence KW - shoreline KW - karst KW - lake Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459134 SN - 1866-8372 IS - 979 SP - 1079 EP - 1098 ER - TY - JOUR A1 - Maghsoudi, Samira A1 - Cesca, Simone A1 - Hainzl, Sebastian A1 - Dahm, Torsten A1 - Zöller, Gert A1 - Kaiser, Diethelm T1 - Maximum Magnitude of Completeness in a Salt Mine JF - Bulletin of the Seismological Society of America N2 - In this study, we analyze acoustic emission (AE) data recorded at the Morsleben salt mine, Germany, to assess the catalog completeness, which plays an important role in any seismicity analysis. We introduce the new concept of a magnitude completeness interval consisting of a maximum magnitude of completeness (M-c(max)) in addition to the well-known minimum magnitude of completeness. This is required to describe the completeness of the catalog, both for the smallest events (for which the detection performance may be low) and for the largest ones (which may be missed because of sensors saturation). We suggest a method to compute the maximum magnitude of completeness and calculate it for a spatial grid based on (1) the prior estimation of saturation magnitude at each sensor, (2) the correction of the detection probability function at each sensor, including a drop in the detection performance when it saturates, and (3) the combination of detection probabilities of all sensors to obtain the network detection performance. The method is tested using about 130,000 AE events recorded in a period of five weeks, with sources confined within a small depth interval, and an example of the spatial distribution of M-c(max) is derived. The comparison between the spatial distribution of M-c(max) and of the maximum possible magnitude (M-max), which is here derived using a recently introduced Bayesian approach, indicates that M-max exceeds M-c(max) in some parts of the mine. This suggests that some large and important events may be missed in the catalog, which could lead to a bias in the hazard evaluation. Y1 - 2015 U6 - https://doi.org/10.1785/0120140039 SN - 0037-1106 SN - 1943-3573 VL - 105 IS - 3 SP - 1491 EP - 1501 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Dahm, Torsten A1 - Heimann, Sebastian A1 - Metz, Malte A1 - Isken, Marius Paul T1 - A self-similar dynamic rupture model based on the simplified wave-rupture analogy JF - Geophysical journal international / the Royal Astronomical Society, the Deutsche Geophysikalische Gesellschaft and the European Geophysical Society N2 - The investigation of stresses, faults, structure and seismic hazards requires a good understanding and mapping of earthquake rupture and slip. Constraining the finite source of earthquakes from seismic and geodetic waveforms is challenging because the directional effects of the rupture itself are small and dynamic numerical solutions often include a large number of free parameters. The computational effort is large and therefore difficult to use in an exploratory forward modelling or inversion approach. Here, we use a simplified self-similar fracture model with only a few parameters, where the propagation of the fracture front is decoupled from the calculation of the slip. The approximative method is flexible and computationally efficient. We discuss the strengths and limitations of the model with real-case examples of well-studied earthquakes. These include the M-w 8.3 2015 Illapel, Chile, megathrust earthquake at the plate interface of a subduction zone and examples of continental intraplate strike-slip earthquakes like the M-w 7.1 2016 Kumamoto, Japan, multisegment variable slip event or the M-w 7.5 2018 Palu, Indonesia, supershear earthquake. Despite the simplicity of the model, a large number of observational features ranging from different rupture-front isochrones and slip distributions to directional waveform effects or high slip patches are easy to model. The temporal evolution of slip rate and rise time are derived from the incremental growth of the rupture and the stress drop without imposing other constraints. The new model is fast and implemented in the open-source Python seismology toolbox Pyrocko, ready to study the physics of rupture and to be used in finite source inversions. KW - Earthquake dynamics KW - Earthquake ground motions KW - Earthquake hazards KW - Earthquake source observations Y1 - 2021 U6 - https://doi.org/10.1093/gji/ggab045 SN - 0956-540X SN - 1365-246X VL - 225 IS - 3 SP - 1586 EP - 1604 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Pirli, Myrto A1 - Hainzl, Sebastian A1 - Schweitzer, Johannes A1 - Köhler, Andreas A1 - Dahm, Torsten T1 - Localised thickening and grounding of an Antarctic ice shelf from tidal triggering and sizing of cryoseismicity JF - Earth & planetary science letters N2 - We observe remarkably periodic patterns of seismicity rates and magnitudes at the Fimbul Ice Shelf, East Antarctica, correlating with the cycles of the ocean tide. Our analysis covers 19 years of continuous seismic recordings from Antarctic broadband stations. Seismicity commences abruptly during austral summer 2011 at a location near the ocean front in a shallow water region. Dozens of highly repetitive events occur in semi-diurnal cycles, with magnitudes and rates fluctuating steadily with the tide. In contrast to the common unpredictability of earthquake magnitudes, the event magnitudes show deterministic trends within single cycles and strong correlations with spring tides and tide height. The events occur quasi-periodically and the highly constrained event sources migrate landwards during rising tide. We show that a simple, mechanical model can explain most of the observations. Our model assumes stick-slip motion on a patch of grounded ice shelf, which is forced by the variations of the ocean-tide height and ice flow. The well fitted observations give new insights into the general process of frictional triggering of earthquakes, while providing independent evidence of variations in ice shelf thickness and grounding. KW - tidally modulated cryogenic seismicity KW - stick-slip motion KW - event recurrence predictability KW - ice-shelf thickness KW - ice-shelf grounding KW - East Antarctica Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.09.024 SN - 0012-821X SN - 1385-013X VL - 503 SP - 78 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dahm, Torsten A1 - Kuehn, Daniela A1 - Ohrnberger, Matthias A1 - Kroeger, Jens A1 - Wiederhold, Helga A1 - Reuther, Claus-Dieter A1 - Dehghani, Ali A1 - Scherbaum, Frank T1 - Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments : application to Hamburg, Germany N2 - Shallowly situated evaporites in built-up areas are of relevance for urban and cultural development and hydrological regulation. The hazard of sinkholes, subrosion depressions and gypsum karst is often difficult to evaluate and may quickly change with anthropogenic influence. The geophysical exploration of evaporites in metropolitan areas is often not feasible with active industrial techniques. We collect and combine different passive geophysical data as microgravity, ambient vibrations, deformation and hydrological information to study the roof morphology of shallow evaporites beneath Hamburg, Northern Germany. The application of a novel gravity inversion technique leads to a 3-D depth model of the salt diapir under study. We compare the gravity-based depth model to pseudo-depths from H/V measurements and depth estimates from small-scale seismological array data. While the general range and trend of the diapir roof is consistent, a few anomalous regions are identified where H/V pseudo-depths indicate shallower structures not observed in gravity or array data. These are interpreted by shallow residual caprock floaters and zones of increased porosity. The shallow salt structure clearly correlates with a relative subsidence in the order of 2 mm yr(-1). The combined interpretation of roof morphology, yearly subsidence rates, chemical analyses of groundwater and of hydraulic head in aquifers indicates that the salt diapir beneath Hamburg is subject to significant ongoing dissolution that may possibly affect subrosion depressions, sinkhole distribution and land usage. The combined analysis of passive geophysical data may be exemplary for the study of shallow evaporites beneath other urban areas. Y1 - 2010 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2010.04521.x SN - 0956-540X ER - TY - JOUR A1 - Niemz, Peter A1 - Dahm, Torsten A1 - Milkereit, Claus A1 - Cesca, Simone A1 - Petersen, Gesa Maria A1 - Zang, Arno T1 - Insights into hydraulic fracture growth gained from a joint analysis of seismometer-derived tilt signals and scoustic emissions JF - Journal of geophysical research : Solid earth N2 - Hydraulic fracturing is performed to enhance rock permeability, for example, in the frame of geothermal energy production or shale gas exploitation, and can potentially trigger induced seismicity. The tracking of increased permeabilities and the fracturing extent is often based on the microseismic event distribution within the stimulated rock volume, but it is debated whether the microseismic activity adequately depicts the fracture formation. We are able to record tilt signals that appear as long-period transients (<180 s) on two broadband seismometers installed close (17-72 m) to newly formed, meter-scale hydraulic fractures. With this observation, we can overcome the limitations of the microseismic monitoring alone and verify the fracture mapping. Our analysis for the first time combines a catalog of previously analyzed acoustic emissions ([AEs] durations of 20 ms), indirectly mapping the fractures, with unique tilt signals, that provide independent, direct insights into the deformation of the rock. The analysis allows to identify different phases of the fracturing process including the (re)opening, growth, and aftergrowth of fractures. Further, it helps to differentiate between the formation of complex fracture networks and single macrofractures, and it validates the AE fracture mapping. Our findings contribute to a better understanding of the fracturing processes, which may help to reduce fluid-injection-induced seismicity and validate efficient fracture formation.
Plain Language Summary Hydraulic fracturing (HF) describes the opening of fractures in rocks by injecting fluids under high pressure. The new fractures not only can facilitate the extraction of shale gas but can also be used to heat up water in the subsurface in enhanced geothermal systems, a corner stone of renewable energy production. The fracture formation is inherently accompanied by small, nonfelt earthquakes (microseismic events). Occasionally, larger events felt by the population can be induced by the subsurface operations. Avoiding such events is important for the acceptance of HF operations and requires a detailed knowledge about the fracture formation. We jointly analyze two very different data sets recorded during mine-scale HF experiments: (a) the tilting of the ground caused by the opening of the fractures, as recorded by broadband seismometers-usually deployed for earthquake monitoring-installed close to the experiments and (b) a catalog of acoustic emissions, seismic signals of few milliseconds emitted by tiny cracks around the forming hydraulic fracture. The novel joint analysis allows to characterize the fracturing processes in greater detail, contributing to the understanding of the physical processes, which may help to understand fluid-injection-induced seismicity and validate the formation of hydraulic fractures. KW - hydraulic fracturing KW - fracture growth KW - tilt KW - acoustic emissions KW - injections KW - broadband seismometer Y1 - 2021 U6 - https://doi.org/10.1029/2021JB023057 SN - 2169-9313 SN - 2169-9356 VL - 126 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Hannemann, Katrin T1 - Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array JF - Geophysical journal international N2 - A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity. KW - body waves KW - earthquake source observations KW - seismicity and tectonics Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa054 SN - 0956-540X SN - 1365-246X VL - 221 IS - 2 SP - 1055 EP - 1080 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Karamzadeh Toularoud, Nasim A1 - Heimann, Sebastian A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Earthquake source arrays BT - optimal configuration and applications in crustal structure studies JF - Geophysical journal international N2 - A collection of earthquake sources recorded at a single station, under specific conditions, are considered as a source array (SA), that is interpreted as if earthquake sources originate at the station location and are recorded at the source location. Then, array processing methods, that is array beamforming, are applicable to analyse the recorded signals. A possible application is to use source array multiple event techniques to locate and characterize near-source scatterers and structural interfaces. In this work the aim is to facilitate the use of earthquake source arrays by presenting an automatic search algorithm to configure the source array elements. We developed a procedure to search for an optimal source array element distribution given an earthquake catalogue including accurate origin time and hypocentre locations. The objective function of the optimization process can be flexibly defined for each application to ensure the prerequisites (criteria) of making a source array. We formulated four quantitative criteria as subfunctions and used the weighted sum technique to combine them in one single scalar function. The criteria are: (1) to control the accuracy of the slowness vector estimation using the time domain beamforming method, (2) to measure the waveform coherency of the array elements, (3) to select events with lower location error and (4) to select traces with high energy of specific phases, that is, sp- or ps-phases. The proposed procedure is verified using synthetic data as well as real examples for the Vogtland region in Northwest Bohemia. We discussed the possible application of the optimized source arrays to identify the location of scatterers in the velocity model by presenting a synthetic test and an example using real waveforms. KW - location of scatterers KW - optimization KW - source array design Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa002 SN - 0956-540X SN - 1365-246X VL - 221 IS - 1 SP - 352 EP - 370 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Maghsoudi, Samira A1 - Hainzl, Sebastian A1 - Cesca, Simone A1 - Dahm, Torsten A1 - Kaiser, Diethelm T1 - Identification and characterization of growing large-scale en-echelon fractures in a salt mine JF - Geophysical journal international N2 - The spatiotemporal seismicity of acoustic emission (AE) events recorded in the Morsleben salt mine is investigated. Almost a year after backfilling of the cavities from 2003, microevents are distributed with distinctive stripe shapes above cavities at different depth levels. The physical forces driving the creation of these stripes are still unknown. This study aims to find the active stripes and track fracture developments over time by combining two different temporal and spatial clustering techniques into a single methodological approach. Anomalous seismicity parameters values like sharp b-value changes for two active stripes are good indicators to explain possible stress accumulation at the stripe tips. We identify the formation of two new seismicity stripes and show that the AE activities in active clusters are migrated mostly unidirectional to eastward and upward. This indicates that the growth of underlying macrofractures is controlled by the gradient of extensional stress. Studying size distribution characteristic in terms of frequency-magnitude distribution and b-value in active phase and phase with constant seismicity rate show that deviations from the Gutenberg-Richter power law can be explained by the inclusion of different activity phases: (1) the inactive period before the formation of macrofractures, which is characterized by a deficit of larger events (higher b-values) and (2) the period of fracture growth characterized by the occurrence of larger events (smaller b-values). KW - Earthquake source observations KW - Statistical seismology Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggt443 SN - 0956-540X SN - 1365-246X VL - 196 IS - 2 SP - 1092 EP - 1105 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Cesca, Simone A1 - Grigoli, Francesco A1 - Heimann, Sebastian A1 - Gonzalez, Alvaro A1 - Buforn, Elisa A1 - Maghsoudi, Samira A1 - Blanch, Estefania A1 - Dahm, Torsten T1 - The 2013 September-October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? JF - Geophysical journal international N2 - A spatially localized seismic sequence originated few tens of kilometres offshore the Mediterranean coast of Spain, close to the Ebro river delta, starting on 2013 September 5, and lasting at least until 2013 October. The sequence culminated in a maximal moment magnitude M-w 4.3 earthquake, on 2013 October 1. The most relevant seismogenic feature in the area is the Fosa de Amposta fault system, which includes different strands mapped at different distances to the coast, with a general NE-SW orientation, roughly parallel to the coastline. However, no significant known historical seismicity has involved this fault system in the past. The epicentral region is also located near the offshore platform of the Castor project, where gas is conducted through a pipeline from mainland and where it was recently injected in a depleted oil reservoir, at about 2 km depth. We analyse the temporal evolution of the seismic sequence and use full waveform techniques to derive absolute and relative locations, estimate depths and focal mechanisms for the largest events in the sequence (with magnitude mbLg larger than 3), and compare them to a previous event (2012 April 8, mbLg 3.3) taking place in the same region prior to the gas injection. Moment tensor inversion results show that the overall seismicity in this sequence is characterized by oblique mechanisms with a normal fault component, with a 30A degrees low-dip angle plane oriented NNE-SSW and a subvertical plane oriented NW-SE. The combined analysis of hypocentral location and focal mechanisms could indicate that the seismic sequence corresponds to rupture processes along shallow low-dip surfaces, which could have been triggered by the gas injection in the reservoir, and excludes the activation of the Amposta fault, as its known orientation is inconsistent with focal mechanism results. An alternative scenario includes the iterated triggering of a system of steep faults oriented NW-SE, which were identified by prior marine seismics investigations. KW - Earthquake dynamics KW - Earthquake source observations Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu172 SN - 0956-540X SN - 1365-246X VL - 198 IS - 2 SP - 941 EP - 953 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Grigoli, Francesco A1 - Cesca, Simone A1 - Amoroso, Ortensia A1 - Emolo, Antonio A1 - Zollo, Aldo A1 - Dahm, Torsten T1 - Automated seismic event location by waveform coherence analysis JF - Geophysical journal international N2 - Automated location of seismic events is a very important task in microseismic monitoring operations as well for local and regional seismic monitoring. Since microseismic records are generally characterized by low signal-to-noise ratio, automated location methods are requested to be noise robust and sufficiently accurate. Most of the standard automated location routines are based on the automated picking, identification and association of the first arrivals of P and S waves and on the minimization of the residuals between theoretical and observed arrival times of the considered seismic phases. Although current methods can accurately pick P onsets, the automatic picking of the S onset is still problematic, especially when the P coda overlaps the S wave onset. In this paper, we propose a picking free earthquake location method based on the use of the short-term-average/long-term-average (STA/LTA) traces at different stations as observed data. For the P phases, we use the STA/LTA traces of the vertical energy function, whereas for the S phases, we use the STA/LTA traces of a second characteristic function, which is obtained using the principal component analysis technique. In order to locate the seismic event, we scan the space of possible hypocentral locations and origin times, and stack the STA/LTA traces along the theoretical arrival time surface for both P and S phases. Iterating this procedure on a 3-D grid, we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatial coordinates of the seismic event. A pilot application was performed in the Campania-Lucania region (southern Italy) using a seismic network (Irpinia Seismic Network) with an aperture of about 150 km. We located 196 crustal earthquakes (depth < 20 km) with magnitude range 1.1 < M-L < 2.7. A subset of these locations were compared with accurate manual locations refined by using a double-difference technique. Our results indicate a good agreement with manual locations. Moreover, our method is noise robust and performs better than classical location methods based on the automatic picking of the P and S waves first arrivals. KW - Time-series analysis KW - Inverse theory KW - Earthquake source observations KW - Seismicity and tectonics KW - Early warning Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggt477 SN - 0956-540X SN - 1365-246X VL - 196 IS - 3 SP - 1742 EP - 1753 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten T1 - Higher degree moment inversin using far-field broad-band recordings : theory and evaluation of the method with application to the 1994 Bolivia deep earthauke Y1 - 1999 ER -