TY - JOUR A1 - Forster, Hans-Jürgen A1 - Cooper, Mark A. A1 - Roberts, Andrew C. A1 - Stanley, Chris J. A1 - Criddle, Alan J. A1 - Hawthorne, Frank C. A1 - Laflamme, J. H. Gilles A1 - Tischendorf, Gerhard T1 - Schlemaite, (Cu,square)(6)(Pb,Bi)Se-4, a new mineral species from Niederschlema-Alberoda, Erzgebirge, Germany : Description and crystal structure N2 - Schlemaite, with the simplified formula (Cu,rectangle)(6)(Pb,Bi)Se-4, is a new mineral species from the Niederschlema-Alberoda vein-type uranium deposit at Hartenstein, Erzgebirge, Germany. It occurs as anhedral to subhedral grains with no obvious forms or twinning, in aggregates of up to several hundred mum across, with berzelianite, eucairite and clausthalite in a dolomite-ankerite matrix. Schlemaite is black with a black streak and opaque with a metallic luster. It is brittle with an uneven fracture and no observable cleavage. It has a mean VHN (25 g load) of 106 kg/mm(2), which roughly equates to a Mobs hardness of 3. In plane-polarized reflected light, schlemaite is grey, non- pleochroic with a very weak bireflectance. It has very weak anisotropy, with rotation tints in shades of very pale metallic orange and blue, and shows no internal reflections. Electron-microprobe analyses yielded a mean composition Cu 38.86, Ag 2.57, An 0.07, Hg 0.09, Pb 13.75, Bi 9.12, Se 35.11, total 99.57 wt.%. The empirical formula (based on 4 Se apfu) is (Cu5.50Ag0.21)(Sigma5.71)(Pb0.60Bi0.39)(Sigma0.99)Se-4. The calculated density is 7.54 g/cm(3) (based on the empirical formula and unit-cell parameters refined from single-crystal data). Schlemaite is monoclinic, P2(1)/m, a 9.5341(8), b 4.1004(3), c 10.2546(8) Angstrom, beta 100.066(2)degrees, V 394.72(9) Angstrom(3), a:b:c 2.3252:1:2.5009, Z = 2. The crystal structure of schlemaite was solved by direct methods and refined to an R index of 4.8% using 1303 unique reflections collected on a four-circle diffractometer equipped with a CCD detector. The structure consists of intercalated ordered and disordered layers. The ordered layer consists of ladders of Ph2+ + Bi3+ coordinated by Se, the former showing strong lone-pair-stereoactive effects, and a network of Cu+ coordinated by Se anions. The disordered layer consists of an array of sites partly occupied by Cu+ and Ag+ in a variety of coordinations, and is characterized by strong short-range order. The strongest seven lines of the X-ray powder-diffraction pattern [d in Angstrom(I)(hkl)] are: 3.189(100)(012), 3.132(100)(112), 2.601(70)(113), 2.505(50)(311), 2.151(60)(014), 2.058(80)(020) and 1.909(50)(314). Although schlemaite is chemically similar to furutobeite, (Cu,Ag)(6)PbS4, it is not isostructural with it. The mineral is named after the Schlema-Alberoda uranium ore field near Schneeberg in the ancient mining region of Saxony, Germany Y1 - 2003 ER - TY - JOUR A1 - Scott, James M. A1 - Cooper, Alan F. A1 - Palin, J. Michael A1 - Tulloch, Andy J. A1 - Kula, Joseph L. A1 - Jongens, Richard A1 - Spell, Terry L. A1 - Pearson, Norman J. T1 - Tracking the influence of a continental margin on growth of a magmatic arc, Fiordland, New Zealand, using thermobarometry, thermochronology, and zircon U-Pb and Hf isotopes N2 - Geothermobarometric, radiogenic isotopic and thermochronologic data are used to track the influence of an ancient continental margin (Western Province) on development of an adjacent Carboniferous-Cretaceous magmatic arc (Outboard Median Batholith) in Fiordland, New Zealand. The data show a record of complicated Mesozoic Gondwana margin growth. Paragneiss within the Outboard Median Batholith is of Carboniferous to Jurassic age and records burial to middle crustal depths in Late Jurassic-Early Cretaceous during subduction-related plutonism and arc thickening. In contrast, Western Province metasedimentary rocks in the area of study immediately west of the Outboard Median Batholith are Late Cambrian-Early Ordovician in age, recrystallized at the amphibolite facies in the Late Devonian-Early Carboniferous and exhibit no evidence for Mesozoic textural or isotopic reequilibration. A phase of deformation, between 128 and 116 Ma deformed, exhumed, and cooled the Outboard Median Batholith to greenschist facies temperatures, while large parts of the Western Province underwent >= 9 kbar metamorphic conditions. Zircon grains from Mesozoic inboard plutons are isotopically more evolved (epsilon Hf(t) = +2.3 to +4.0) than those in the Outboard Median Batholith (epsilon Hf(t) = +9.4 to +11.1). The contrasting zircon Hf isotope ratios, absence of S-type plutons or Proterozoic-Early Paleozoic inherited zircon, and the apparent absence of Early Paleozoic metasedimentary rocks indicates that the Outboard Median Batholith is unlikely to be underlain by the Western Province continental lithosphere. The new data are consistent with the Outboard Median Batholith representing an allochthonous (although not necessarily exotic) arc that was juxtaposed onto the Gondwana continental margin along the intervening Grebe Mylonite Zone. Y1 - 2009 UR - http://www.agu.org/journals/tc/ U6 - https://doi.org/10.1029/2009tc002489 SN - 0278-7407 ER - TY - JOUR A1 - Ley-Cooper, Alan Yusen A1 - Viezzoli, Andrea A1 - Guillemoteau, Julien A1 - Vignoli, Giulio A1 - Macnae, James A1 - Cox, Leif A1 - Munday, Tim T1 - Airborne electromagnetic modelling options and their consequences in target definition JF - Exploration geophysics : the bulletin of the Australian Society of Exploration Geophysicists N2 - Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over ID inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator. Inversion of airborne EM data is known to be an ill-posed problem. We can generate a variety of models that numerically adequately fit the measured data, which makes the solution non-unique. The application of different deterministic inversion codes or transforms to the same dataset can give dissimilar results, as shown in this paper. This ambiguity suggests the choice of processes and algorithms used to interpret AEM data cannot be resolved as a matter of personal choice and preference. The degree to which models generated by a ID algorithm replicate/or not measured data, can be an indicator of the data's dimensionality, which perse does not imply that data that can be fitted with a 1D model cannot be multidimensional. On the other hand, it is crucial that codes that can generate 2D and 3D models do reproduce the measured data in order for them to be considered as a plausible solution. In the absence of ancillary information, it could be argued that the simplest model with the simplest physics might be preferred. KW - airborne KW - electromagnetics KW - exploration KW - inversion KW - target Y1 - 2015 U6 - https://doi.org/10.1071/EG14045 SN - 0812-3985 SN - 1834-7533 VL - 46 IS - 1 SP - 74 EP - 84 PB - CSIRO CY - Clayton ER - TY - JOUR A1 - Toy, Virginia Gail A1 - Sutherland, Rupert A1 - Townend, John A1 - Allen, Michael J. A1 - Becroft, Leeza A1 - Boles, Austin A1 - Boulton, Carolyn A1 - Carpenter, Brett A1 - Cooper, Alan A1 - Cox, Simon C. A1 - Daube, Christopher A1 - Faulkner, D. R. A1 - Halfpenny, Angela A1 - Kato, Naoki A1 - Keys, Stephen A1 - Kirilova, Martina A1 - Kometani, Yusuke A1 - Little, Timothy A1 - Mariani, Elisabetta A1 - Melosh, Benjamin A1 - Menzies, Catriona D. A1 - Morales, Luiz A1 - Morgan, Chance A1 - Mori, Hiroshi A1 - Niemeijer, Andre A1 - Norris, Richard A1 - Prior, David A1 - Sauer, Katrina A1 - Schleicher, Anja Maria A1 - Shigematsu, Norio A1 - Teagle, Damon A. H. A1 - Tobin, Harold A1 - Valdez, Robert A1 - Williams, Jack A1 - Yeo, Samantha A1 - Baratin, Laura-May A1 - Barth, Nicolas A1 - Benson, Adrian A1 - Boese, Carolin A1 - Célérier, Bernard A1 - Chamberlain, Calum J. A1 - Conze, Ronald A1 - Coussens, Jamie A1 - Craw, Lisa A1 - Doan, Mai-Linh A1 - Eccles, Jennifer A1 - Grieve, Jason A1 - Grochowski, Julia A1 - Gulley, Anton A1 - Howarth, Jamie A1 - Jacobs, Katrina A1 - Janku-Capova, Lucie A1 - Jeppson, Tamara A1 - Langridge, Robert A1 - Mallyon, Deirdre A1 - Marx, Ray A1 - Massiot, Cécile A1 - Mathewson, Loren A1 - Moore, Josephine A1 - Nishikawa, Osamu A1 - Pooley, Brent A1 - Pyne, Alex A1 - Savage, Martha K. A1 - Schmitt, Doug A1 - Taylor-Offord, Sam A1 - Upton, Phaedra A1 - Weaver, Konrad C. A1 - Wiersberg, Thomas A1 - Zimmer, Martin T1 - Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand JF - New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG N2 - During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled. KW - Alpine Fault KW - New Zealand KW - scientific drilling KW - mylonite KW - cataclasite Y1 - 2017 U6 - https://doi.org/10.1080/00288306.2017.1375533 SN - 0028-8306 SN - 1175-8791 VL - 60 IS - 4 SP - 497 EP - 518 PB - Taylor & Francis CY - Abingdon ER -