TY - JOUR A1 - Lorenz, Claas A1 - Clemens, Vera Elisabeth A1 - Schrötter, Max A1 - Schnor, Bettina T1 - Continuous verification of network security compliance JF - IEEE transactions on network and service management N2 - Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41. KW - Security KW - Tools KW - Network security KW - Engines KW - Benchmark testing; KW - Analytical models KW - Scalability KW - Network KW - security KW - compliance KW - formal KW - verification Y1 - 2021 U6 - https://doi.org/10.1109/TNSM.2021.3130290 SN - 1932-4537 VL - 19 IS - 2 SP - 1729 EP - 1745 PB - Institute of Electrical and Electronics Engineers CY - New York ER - TY - GEN A1 - Lorenz, Claas A1 - Kiekheben, Sebastian A1 - Schnor, Bettina T1 - FaVe: Modeling IPv6 firewalls for fast formal verification T2 - International Conference on Networked Systems (NetSys) 2017 N2 - As virtualization drives the automation of networking, the validation of security properties becomes more and more challenging eventually ruling out manual inspections. While formal verification in Software Defined Networks is provided by comprehensive tools with high speed reverification capabilities like NetPlumber for instance, the presence of middlebox functionality like firewalls is not considered. Also, they lack the ability to handle dynamic protocol elements like IPv6 extension header chains. In this work, we provide suitable modeling abstractions to enable both - the inclusion of firewalls and dynamic protocol elements. We exemplarily model the Linux ip6tables/netfilter packet filter and also provide abstractions for an application layer gateway. Finally, we present a prototype of our formal verification system FaVe. Y1 - 2017 U6 - https://doi.org/10.1109/NetSys.2017.7903956 PB - IEEE CY - New York ER -