TY - JOUR A1 - Ehlert, Christopher A1 - Gühr, Markus A1 - Saalfrank, Peter T1 - An efficient first principles method for molecular pump-probe NEXAFS spectra BT - application to thymine and azobenzene JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Pump-probe near edge X-ray absorption fine structure (PP-NEXAFS) spectra of molecules offer insight into valence-excited states, even if optically dark. In PP-NEXAFS spectroscopy, the molecule is "pumped" by UV or visible light enforcing a valence excitation, followed by an X-ray "probe" exciting core electrons into (now) partially empty valence orbitals. Calculations of PP-NEXAFS have so far been done by costly, correlated wavefunction methods which are not easily applicable to medium-sized or large molecules. Here we propose an efficient, first principles method based on density functional theory in combination with the transition potential and Delta SCF methodology (TP-DFT/Delta SCF) to compute molecular ground state and PP-NEXAFS spectra. We apply the method to n ->pi* pump/O-K-edge NEXAFS probe spectroscopy of thymine (for which both experimental and other theoretical data exist) and to n -> pi* or pi -> pi* pump/N-K-edge NEXAFS probe spectroscopies of trans-and cis-azobenzene. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5050488 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 14 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1301 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577442 SN - 1866-8372 N1 - These authors contributed equally: D. Mayer, F. Lever. A Publisher Correction to this article was published on 09 March 2022. This article has been updated. IS - 1301 ER - TY - JOUR A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([C(n)C(1)im](+)[NTf2](-) and [C(4)C(1)im](+)[I](-)). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. Y1 - 2016 U6 - https://doi.org/10.1039/c5cp07434g SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 8654 EP - 8661 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kröner, Dominik A1 - Ehlert, Christopher A1 - Saalfrank, Peter A1 - Holländer, Andreas T1 - Ab initio calculations for XPS chemical shifts of poly(vinyl-trifluoroacetate) using trimer models JF - Surface science N2 - X-ray photoelectron spectra (XPS) of the polymer poly(vinyl-trifluoroacetate) show C(1s) binding energy shifts which are unusual because they are influenced by atoms which are several bonds away from the probed atom. In this work, the influence of the trifluoroacetate substituent on the 1s ionization potential of the carbon atoms of the polyethylene chain is investigated theoretically using mono-substituted, diad and triad models of trimers representing the polymer. Carbon 1s ionization energies are calculated by the Hartree-Fock theory employing Koopmans' theorem. The influence of the configuration and conformation of the functional groups as well as the degree of substitution are found to be important determinants of XPS spectra. It is further found that the 1s binding energy correlates in a linear fashion, with the total electrostatic potential at the position of the probe atom, and depends not only on nearest neighbor effects. This may have implications for the interpretation of high-resolution XP spectra. KW - Ab initio quantum chemical methods and calculations KW - X-ray photoelectron spectroscopy KW - Insulating films Y1 - 2011 U6 - https://doi.org/10.1016/j.susc.2011.05.021 SN - 0039-6028 VL - 605 IS - 15-16 SP - 1516 EP - 1524 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ehlert, Christopher A1 - Kröner, Dominik A1 - Saalfrank, Peter T1 - A combined quantum chemical/molecular dynamics study of X-ray photoelectron spectra of polyvinyl alcohol using oligomer models JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car-Parrinello method. Snapshots along, the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Delta-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene. We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV. (C) 2014 Elsevier B.V. All rights reserved. KW - Simulation of polymer XPS KW - Delta-Kohn Sham method KW - Thermal broadening effects KW - Interchain interactions KW - Classical MD KW - Poly vinyl alcohol Y1 - 2015 U6 - https://doi.org/10.1016/j.elspec.2014.12.007 SN - 0368-2048 SN - 1873-2526 VL - 199 SP - 38 EP - 45 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ehlert, Christopher A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01106f SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 27 SP - 14083 EP - 14095 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Heinrich, Benjamin W. A1 - Ehlert, Christopher A1 - Hatter, Nino A1 - Braun, Lukas A1 - Lotze, Christian A1 - Saalfrank, Peter A1 - Franke, Katharina J. T1 - Control of oxidation and spin state in a single-molecule junction JF - ACS nano N2 - The oxidation and spin state of a metal-organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning electron tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations. KW - porphyrin KW - oxidation state KW - spin state KW - scanning tunneling microscopy KW - scanning tunneling spectroscopy KW - density functional theory Y1 - 2018 U6 - https://doi.org/10.1021/acsnano.8b00312 SN - 1936-0851 SN - 1936-086X VL - 12 IS - 4 SP - 3172 EP - 3177 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature Communications N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 N1 - These authors contributed equally: D. Mayer, F. Lever. A Publisher Correction to this article was published on 09 March 2022. This article has been updated. VL - 13 PB - Springer Nature CY - Berlin ER - TY - GEN A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 315 KW - ray absorption-spectroscopy KW - fine-structure KW - spectra KW - simulations KW - molecules KW - dynamics KW - graphene KW - surface KW - salts Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394417 SP - 8654 EP - 8661 ER - TY - JOUR A1 - Tetenoire, Auguste A1 - Ehlert, Christopher A1 - Juaristi, Joseba Iñaki A1 - Saalfrank, Peter A1 - Alducin, Maite T1 - Why ultrafast photoinduced CO desorption dominates over oxidation on Ru(0001) JF - The journal of physical chemistry letters N2 - CO oxidation on Ru(0001) is a long-standing example of a reaction that, being thermally forbidden in ultrahigh vacuum, can be activated by femtosecond laser pulses. In spite of its relevance, the precise dynamics of the photoinduced oxidation process as well as the reasons behind the dominant role of the competing CO photodesorption remain unclear. Here we use ab initio molecular dynamics with electronic friction that account for the highly excited and nonequilibrated system created by the laser to investigate both reactions. Our simulations successfully reproduce the main experimental findings: the existence of photoinduced oxidation and desorption, the large desorption to oxidation branching ratio, and the changes in the O K-edge X-ray absorption spectra attributed to the initial stage of the oxidation process. Now, we are able to monitor in detail the ultrafast CO desorption and CO oxidation occurring in the highly excited system and to disentangle what causes the unexpected inertness to the otherwise energetically favored oxidation. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c02327 SN - 1948-7185 VL - 13 IS - 36 SP - 8516 EP - 8521 PB - American Chemical Society CY - Washington, DC ER -