TY - JOUR A1 - von Loeffelholz, Christian A1 - Lieske, Stefanie A1 - Neuschaefer-Rube, Frank A1 - Willmes, Diana M. A1 - Raschzok, Nathanael A1 - Sauer, Igor M. A1 - König, Jörg A1 - Fromm, Martin F. A1 - Horn, Paul A1 - Chatzigeorgiou, Antonios A1 - Pathe-Neuschaefer-Rube, Andrea A1 - Jordan, Jens A1 - Pfeiffer, Andreas F. H. A1 - Mingrone, Geltrude A1 - Bornstein, Stefan R. A1 - Stroehle, Peter A1 - Harms, Christoph A1 - Wunderlich, F. Thomas A1 - Helfand, Stephen L. A1 - Bernier, Michel A1 - de Cabo, Rafael A1 - Shulman, Gerald I. A1 - Chavakis, Triantafyllos A1 - Püschel, Gerhard Paul A1 - Birkenfeld, Andreas L. T1 - The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism BT - official journal of the American Association for the Study of Liver Diseases JF - Hepatology N2 - Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. Conclusion: Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450. Y1 - 2017 U6 - https://doi.org/10.1002/hep.29089 SN - 0270-9139 SN - 1527-3350 VL - 66 IS - 2 SP - 616 EP - 630 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - König, Christian A1 - Weigelt, Patrick A1 - Taylor, Amanda A1 - Stein, Anke A1 - Dawson, Wayne A1 - Essl, Franz A1 - Pergl, Jan A1 - Pyšek, Petr A1 - Kleunen, Mark van A1 - Winter, Marten A1 - Chatelain, Cyrille A1 - Wieringa, Jan J. A1 - Krestov, Pavel A1 - Kreft, Holger T1 - Source pools and disharmony of the world’s island floras JF - Ecography N2 - Island disharmony refers to the biased representation of higher taxa on islands compared to their mainland source regions and represents a central concept in island biology. Here, we develop a generalizable framework for approximating these source regions and conduct the first global assessment of island disharmony and its underlying drivers. We compiled vascular plant species lists for 178 oceanic islands and 735 mainland regions. Using mainland data only, we modelled species turnover as a function of environmental and geographic distance and predicted the proportion of shared species between each island and mainland region. We then quantified the over- or under-representation of families on individual islands (representational disharmony) by contrasting the observed number of species against a null model of random colonization from the mainland source pool, and analysed the effects of six family-level functional traits on the resulting measure. Furthermore, we aggregated the values of representational disharmony per island to characterize overall taxonomic bias of a given flora (compositional disharmony), and analysed this second measure as a function of four island biogeographical variables. Our results indicate considerable variation in representational disharmony both within and among plant families. Examples of generally over-represented families include Urticaceae, Convolvulaceae and almost all pteridophyte families. Other families such as Asteraceae and Orchidaceae were generally under-represented, with local peaks of over-representation in known radiation hotspots. Abiotic pollination and a lack of dispersal specialization were most strongly associated with an insular over-representation of families, whereas other family-level traits showed minor effects. With respect to compositional disharmony, large, high-elevation islands tended to have the most disharmonic floras. Our results provide important insights into the taxon- and island-specific drivers of disharmony. The proposed framework allows overcoming the limitations of previous approaches and provides a quantitative basis for incorporating functional and phylogenetic approaches into future studies of island disharmony. KW - assembly processes KW - biotic filtering KW - dispersal filtering KW - environmental filtering KW - generalized dissimilarity modelling KW - island disharmony KW - island syndromes KW - source regions KW - vascular plants Y1 - 2020 VL - 44 IS - 1 PB - Wiley-Blackwell CY - Oxford ER - TY - GEN A1 - König, Christian A1 - Weigelt, Patrick A1 - Taylor, Amanda A1 - Stein, Anke A1 - Dawson, Wayne A1 - Essl, Franz A1 - Pergl, Jan A1 - Pyšek, Petr A1 - Kleunen, Mark van A1 - Winter, Marten A1 - Chatelain, Cyrille A1 - Wieringa, Jan J. A1 - Krestov, Pavel A1 - Kreft, Holger T1 - Source pools and disharmony of the world’s island floras T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Island disharmony refers to the biased representation of higher taxa on islands compared to their mainland source regions and represents a central concept in island biology. Here, we develop a generalizable framework for approximating these source regions and conduct the first global assessment of island disharmony and its underlying drivers. We compiled vascular plant species lists for 178 oceanic islands and 735 mainland regions. Using mainland data only, we modelled species turnover as a function of environmental and geographic distance and predicted the proportion of shared species between each island and mainland region. We then quantified the over- or under-representation of families on individual islands (representational disharmony) by contrasting the observed number of species against a null model of random colonization from the mainland source pool, and analysed the effects of six family-level functional traits on the resulting measure. Furthermore, we aggregated the values of representational disharmony per island to characterize overall taxonomic bias of a given flora (compositional disharmony), and analysed this second measure as a function of four island biogeographical variables. Our results indicate considerable variation in representational disharmony both within and among plant families. Examples of generally over-represented families include Urticaceae, Convolvulaceae and almost all pteridophyte families. Other families such as Asteraceae and Orchidaceae were generally under-represented, with local peaks of over-representation in known radiation hotspots. Abiotic pollination and a lack of dispersal specialization were most strongly associated with an insular over-representation of families, whereas other family-level traits showed minor effects. With respect to compositional disharmony, large, high-elevation islands tended to have the most disharmonic floras. Our results provide important insights into the taxon- and island-specific drivers of disharmony. The proposed framework allows overcoming the limitations of previous approaches and provides a quantitative basis for incorporating functional and phylogenetic approaches into future studies of island disharmony. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1211 KW - assembly processes KW - biotic filtering KW - dispersal filtering KW - environmental filtering KW - generalized dissimilarity modelling KW - island disharmony KW - island syndromes KW - source regions KW - vascular plants Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525101 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Lenzner, Bernd A1 - Magallon, Susana A1 - Dawson, Wayne A1 - Kreft, Holger A1 - König, Christian A1 - Pergl, Jan A1 - Pysek, Petr A1 - Weigelt, Patrick A1 - van Kleunen, Mark A1 - Winter, Marten A1 - Dullinger, Stefan A1 - Essl, Franz T1 - Role of diversification rates and evolutionary history as a driver of plant naturalization success JF - New phytologist : international journal of plant science N2 - Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges. KW - alien species KW - evolution KW - geographic distribution KW - invasion success KW - plant naturalization KW - range size Y1 - 2020 U6 - https://doi.org/10.1111/nph.17014 SN - 0028-646X SN - 1469-8137 VL - 229 IS - 5 SP - 2998 EP - 3008 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zurell, Damaris A1 - König, Christian A1 - Malchow, Anne-Kathleen A1 - Kapitza, Simon A1 - Bocedi, Greta A1 - Travis, Justin M. J. A1 - Fandos, Guillermo T1 - Spatially explicit models for decision-making in animal conservation and restoration JF - Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos N2 - Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79%), towards the species and population level (80%) and towards conservation (rather than restoration) applications (71%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes. KW - adaptive management KW - biodiversity conservation KW - cost optimisation KW - ecosystem restoration KW - global change KW - predictive models Y1 - 2021 U6 - https://doi.org/10.1111/ecog.05787 SN - 1600-0587 IS - 4 SP - 1 EP - 16 PB - Wiley-Blackwell CY - Oxford ER - TY - GEN A1 - Zurell, Damaris A1 - König, Christian A1 - Malchow, Anne-Kathleen A1 - Kapitza, Simon A1 - Bocedi, Greta A1 - Travis, Justin M. J. A1 - Fandos, Guillermo T1 - Spatially explicit models for decision-making in animal conservation and restoration T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79%), towards the species and population level (80%) and towards conservation (rather than restoration) applications (71%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1243 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549915 SN - 1866-8372 VL - 2022 SP - 1 EP - 16 PB - Universitätsverlag Potsdam CY - Potsdam ET - 4 ER - TY - JOUR A1 - Ostermann-Miyashita, Emu-Felicitas A1 - König, Hannes J. A1 - Pernat, Nadja A1 - Bellingrath-Kimura, Sonoko Dorothea A1 - Hibler, Sophia A1 - Kiffner, Christian T1 - Knowledge of returning wildlife species and willingness to participate in citizen science projects among wildlife park visitors in Germany JF - People and nature N2 - Successful conservation efforts have led to recent increases of large mammals such as European bison Bison bonasus, moose Alces alces and grey wolf Canis lupus and their return to former habitats in central Europe. While embraced by some, the recovery of these species is a controversial topic and holds potential for human-wildlife conflicts. Involving the public has been suggested to be an effective method for monitoring wildlife and mitigating associated conflicts. To assess two interrelated prerequisites for engaging people in Citizen Science (CS)-knowledge of returning species and respondents' readiness to participate in CS activities for monitoring and managing these species-we conducted a survey (questionnaire) in two wildlife parks located in different states of Germany. Based on 472 complete questionnaires, we developed generalized linear models to understand how sociodemographic variables and exposure to the species affected visitors' knowledge of each species, and to investigate if sociodemographic variables and knowledge influenced the likelihood of visitors to participate in CS activities. Almost all visitors were aware of the returning wolf population, while knowledge and awareness about bison and moose were significantly lower. Knowledge of the two herbivores differed geographically (higher knowledge of moose in the north-eastern state), possibly indicating a positive association between exposure to the species and knowledge. However, models generally performed poorly in predicting knowledge about wildlife, suggesting that such specific knowledge is insufficiently explained by sociodemographic variables. Our model, which explained stated willingness in CS indicated that younger participants and those with higher knowledge scores in the survey were more willing to engage in CS activities. Overall, our analyses highlight how exposure to large mammals, knowledge about wildlife and human demographics are interrelated-insights that are helpful for effectively recruiting citizen scientists for wildlife conservation. Read the free Plain Language Summary for this article on the Journal blog. KW - environmental awareness KW - human-animal relationships KW - human-wildlife conflicts KW - social-ecological system KW - wildlife conservation KW - wildlife knowledge Y1 - 2022 U6 - https://doi.org/10.1002/pan3.10379 SN - 2575-8314 VL - 4 IS - 5 SP - 1201 EP - 1215 PB - British Ecological Society; Wiley CY - London; Hoboken, NJ ER - TY - GEN A1 - Lenzner, Bernd A1 - Magallon, Susana A1 - Dawson, Wayne A1 - Kreft, Holger A1 - König, Christian A1 - Pergl, Jan A1 - Pysek, Petr A1 - Weigelt, Patrick A1 - van Kleunen, Mark A1 - Winter, Marten A1 - Dullinger, Stefan A1 - Essl, Franz T1 - Role of diversification rates and evolutionary history as a driver of plant naturalization success T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1363 KW - alien species KW - evolution KW - geographic distribution KW - invasion success KW - plant naturalization KW - range size Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569996 SN - 1866-8372 IS - 5 ER -