TY - BOOK A1 - Schulz, Burkhard A1 - Orgzall, Ingo A1 - Freydank, Anke-Christine A1 - Chenggang, Xü T1 - Self-organization of substituted 1,3,4-oxadizazoles in the solid state and at surfaces N2 - Different aspects of the structure formation for a class of molecules containing the diphenyl-1,3,4-oxadiazole fragment are discussed. Starting from the bulk state with the ideal crystal lattice and the derivation of some common packing motifs the formation of liquid-crystalline states are described. This leads to the consideration of structures found in Langmuir-Blodgett films and those obtained by organic molecular beam deposition. These structures may again be compared to those for the bulk crystalline state. Common features as well as characteristic differences due to peculiarities of the individual molecular structures are discussed. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Sarauli, David A1 - Xu, Chenggang A1 - Dietzel, Birgit A1 - Stiba, Konstanze A1 - Leimkühler, Silke A1 - Schulz, Burkhard A1 - Lisdat, Fred T1 - Thin films of substituted polyanilines interactions with biomolecular systems JF - Soft matter N2 - We use substituted polyanilines for the construction of new polymer electrodes for interaction studies with the redox protein cytochrome c (cyt c) and the enzyme sulfite oxidase (SO). For these purposes four different polyaniline copolymers are chemically synthesized. Three of them are copolymers, containing 2-methoxyaniline-5-sulfonic acid with variable ratios of aniline; the fourth copolymer consists of 3-amino-benzoic acid and aniline. The results show that all polymers are suitable for being immobilized as thin stable films on gold wire and indium tin oxide (ITO) electrode surfaces from DMSO solution. This can be demonstrated by cyclic voltammetry and UV-Vis spectroscopy measurements. Moreover, cyt c can be electrochemically detected not only in solution, but also immobilized on top of the polymer films. Furthermore, the appearance of a significant catalytic current has been demonstrated for the sulfonated polyanilines, when the polymer-coated protein electrode is being measured upon addition of sulfite oxidase, confirming the establishment of a bioanalytical signal chain. Best results have been obtained for the polymer with highest sulfonation grade. The redox switching of the polymer by the enzymatic reaction can also be analyzed by following the spectral properties of the polymer electrode. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm07261k SN - 1744-683X VL - 8 IS - 14 SP - 3848 EP - 3855 PB - Royal Society of Chemistry CY - Cambridge ER -