TY - JOUR A1 - Guillemoteau, Julien A1 - Sailhac, Pascal A1 - Boulanger, Charles A1 - Trules, Jeremie T1 - Inversion of ground constant offset loop-loop electromagnetic data for a large range of induction numbers JF - Geophysics N2 - Ground loop-loop electromagnetic surveys are often conducted to fulfill the low-induction-number condition. To image the distribution of electric conductivity inside the ground, it is then necessary to collect a multioffset data set. We considered that less time-consuming constant offset measurements can also reach this objective. This can be achieved by performing multifrequency soundings, which are commonly performed for the airborne electromagnetic method. Ground multifrequency soundings have to be interpreted carefully because they contain high-induction-number data. These data are interpreted in two steps. First, the in-phase and out-of-phase data are converted into robust apparent conductivities valid for all the induction numbers. Second, the apparent conductivity data are inverted in 1D and 2D to obtain the true distribution of the ground conductivity. For the inversion, we used a general half-space Jacobian for the apparent conductivity valid for all the induction numbers. This method was applied and validated on synthetic data computed with the full Maxwell theory. The method was then applied on field data acquired in the test site of Provins, in the Parisian basin, France. The result revealed good agreement with borehole and geologic information, demonstrating the applicability of our method. Y1 - 2015 U6 - https://doi.org/10.1190/GEO2014-0005.1 SN - 0016-8033 SN - 1942-2156 VL - 80 IS - 1 SP - E11 EP - E21 PB - Society of Exploration Geophysicists CY - Tulsa ER -