TY - JOUR A1 - Bielcik, Milos A1 - Aguilar-Trigueros, Carlos A. A1 - Lakovic, Milica A1 - Jeltsch, Florian A1 - Rillig, Matthias C. T1 - The role of active movement in fungal ecology and community assembly JF - Movement Ecology N2 - Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus. KW - Filamentous fungi KW - Microbial community KW - Active movement KW - Modular organisms KW - Interference competition KW - Fungal space searching algorithms KW - Fungal foraging KW - Fungal highways KW - Clonal plants KW - Slime molds Y1 - 2019 U6 - https://doi.org/10.1186/s40462-019-0180-6 SN - 2051-3933 VL - 7 IS - 1 PB - BMC CY - London ER - TY - JOUR A1 - Lozano, Yudi M. A1 - Aguilar-Trigueros, Carlos A. A1 - Onandia, Gabriela A1 - Maaß, Stefanie A1 - Zhao, Tingting A1 - Rillig, Matthias C. T1 - Effects of microplastics and drought on soil ecosystem functions and multifunctionality JF - Journal of applied ecology : an official journal of the British Ecological Society N2 - 1. Microplastics in soils have become an important threat for terrestrial systems as they may potentially alter the geochemical/biophysical soil environment and can interact with drought. As microplastics may affect soil water content, this could exacerbate the well-known negative effects of drought on ecosystem functionality. Thus, functions including litter decomposition, soil aggregation or those related with nutrient cycling can be altered. Despite this potential interaction, we know relatively little about how microplastics, under different soil water conditions, affect ecosystem functions and multifunctionality. 2. To address this gap, we performed an experiment using grassland plant communities growing in microcosms. Microplastic fibres (absent, present) and soil water conditions (well-watered, drought) were applied in a fully factorial design. At harvest, we measured soil ecosystem functions related to nutrient cycling (beta-glucosaminidase, beta-D-cellobiosidase, phosphatase, beta-glucosidase enzymes), respiration, nutrient retention, pH, litter decomposition and soil aggregation (water stable aggregates). As terrestrial systems provide these functions simultaneously, we also assessed ecosystem multifunctionality, an index that encompasses the array of ecosystem functions measured here. 3. We found that the interaction between microplastic fibres and drought affected ecosystem functions and multifunctionality. Drought had negatively affected nutrient cycling by decreasing enzymatic activities by up to similar to 39%, while microplastics increased soil aggregation by similar to 18%, soil pH by similar to 4% and nutrient retention by up to similar to 70% by diminishing nutrient leaching. Microplastic fibres also impacted soil enzymes, respiration and ecosystem multifunctionality, but importantly, the direction of these effects depended on soil water status. That is, under well-watered conditions, these functions decreased with microplastic fibres by up to similar to 34% while under drought they had similar values irrespective of the microplastic presence, or tended to increase with microplastics. Litter decomposition had a contrary pattern increasing with microplastics by similar to 6% under well-watered conditions while decreasing to a similar percentage under drought. 4. Synthesis and applications. Single ecosystem functions can be positively or negatively affected by microplastics fibres depending on soil water status. However, our results suggest that microplastic fibres may cause negative effects on ecosystem soil multifunctionality of a similar magnitude as drought. Thus, strategies to counteract this new global change factor are necessary. KW - enzymatic activities KW - grasslands ecosystem KW - litter decomposition KW - nutrient cycling KW - nutrient leaching KW - soil aggregation KW - soil pH KW - soil respiration Y1 - 2021 U6 - https://doi.org/10.1111/1365-2664.13839 SN - 1365-2664 VL - 58 IS - 5 SP - 988 EP - 996 PB - Wiley-Blackwell CY - Oxford [u.a.] ER -