TY - GEN A1 - Wirth, Jonas A1 - Kirsch, Harald A1 - Wlosczyk, Sebastian A1 - Tong, Yujin A1 - Saalfrank, Peter A1 - Kramer Campen, Richard T1 - Characterization of water dissociation on α-Al2O3(1102) BT - theory and experiment N2 - The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(1[1 with combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1–4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm−1. Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 320 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394497 SP - 14822 EP - 14832 ER - TY - JOUR A1 - Yue, Yanhua A1 - Melani, Giacomo A1 - Kirsch, Harald A1 - Paarmann, Alexander A1 - Saalfrank, Peter A1 - Campen, Richard Kramer A1 - Tong, Yujin T1 - Structure and Reactivity of a-Al2O3(0001) Surfaces: How Do Al-I and Gibbsite-like Terminations Interconvert? JF - The journal of physical chemistry / publ. weekly by the American Chemical Society. C, Energy, materials, and catalysis N2 - The alpha-Al2O3(0001) surface has been extensively studied because of its significance in both fundamental research and application. Prior work suggests that in ultra-high-vacuum (UHV), in the absence of water, the so-called Al-I termination is thermodynamically favored, while in ambient, in contact with liquid water, a Gibbsite-like layer is created. While the view of the alpha- Al2O3(0001)/H2O(l) interface appears relatively clear in theory, experimental characterization of this system has resulted in estimates of surface acidity, i.e., isoelectric points, that differ by 4 pH units and surface structure that in some reports has non-hydrogen-bonded surface aluminol (Al-OH) groups and in others does not. In this study, we employed vibrational sum frequency spectroscopy (VSFS) and density functional theory (DFT) simulation to study the surface phonon modes of the differently terminated alpha-Al2O3(0001) surfaces in both UHV and ambient. We find that, on either water dosing of the Al-I in UHV or heat-induced dehydroxylation of the Gibbsite-like in ambient, the surfaces do not interconvert. This observation offers a new explanation for disagreements in prior work on the alpha-Al2O3(0001)/liquid water interface -different preparation methods may create surfaces that do not interconvert-and shows that the surface phonon spectral response offers a novel probe of interfacial hydrogen bonding structure. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpcc.2c03743 SN - 1932-7447 SN - 1932-7455 VL - 126 IS - 31 SP - 13467 EP - 13476 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wirth, Jonas A1 - Kirsch, Harald A1 - Wlosczyk, Sebastian A1 - Tong, Yujin A1 - Saalfrank, Peter A1 - Campen, Richard Kramer T1 - Characterization of water dissociation on alpha-Al2O3(1(1)over-bar02): theory and experiment JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The interaction of water with a-alumina (i.e. alpha-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with alpha-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined alpha-Al2O3(1 (1) over bar 02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1-4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrodinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm(-1). Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp01397j SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 14822 EP - 14832 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tong, Yujin A1 - Wirth, Jonas A1 - Kirsch, Harald A1 - Wolf, Martin A1 - Saalfrank, Peter A1 - Campen, Richard Kramer T1 - Optically probing Al-O and O-H vibrations to characterize water adsorption and surface reconstruction on alpha-alumina: An experimental and theoretical study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Oxide/water interfaces are ubiquitous in a wide variety of applications and the environment. Despite this ubiquity, and attendant decades of study, gaining molecular level insight into water/oxide interaction has proven challenging. In part, this challenge springs from a lack of tools to concurrently characterize changes in surface structure (i.e., water/oxide interaction from the perspective of the solid) and O-H population and local environment (i.e., water/oxide interaction from the water perspective). Here, we demonstrate the application of surface specific vibrational spectroscopy to the characterization of the interaction of the paradigmatic alpha-Al2O3(0001) surface and water. By probing both the interfacial Al-O (surface phonon) and O-H spectral response, we characterize this interaction from both perspectives. Through electronic structure calculation, we assign the interfacial Al-O response and rationalize its changes on surface dehydroxylation and reconstruction. Because our technique is all-optical and interface specific, it is equally applicable to oxide surfaces in vacuum, ambient atmospheres and at the solid/liquid interface. Application of this approach to additional alumina surfaces and other oxides thus seems likely to significantly expand our understanding of how water meets oxide surfaces and thus the wide variety of phenomena this interaction controls. (C) 2015 AIP Publishing LLC. Y1 - 2015 U6 - https://doi.org/10.1063/1.4906346 SN - 0021-9606 SN - 1089-7690 VL - 142 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kirsch, Harald A1 - Wirth, Jonas A1 - Tong, Yujin A1 - Wolf, Martin A1 - Saalfrank, Peter A1 - Campen, Richard Kramer T1 - Experimental characterization of unimolecular water dissociative adsorption on alpha-alumina JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - alpha-Al2O3 surfaces are common in both engineered applications and the environment. Much prior work indicates that their properties, e.g., reactivity, polarity, and charge, change dramatically on interaction with water. Perhaps the simplest question that can be asked of alpha-Al2O3/water interaction is how a single water molecule interacts with the most stable alpha-Al2O3 surface: the alpha-Al2O3(0001). Over the last 15 years, a series of theoretical studies have found that water dissociatively adsorbs on alpha-Al2O3(0001) through two channels. However, to our knowledge no experimental evidence of these dissociation pathways has appeared. By combining sample preparation via supersonic molecular beam dosing, sample characterization via coherent, surface specific vibrational spectroscopy and electronic structure theory, we report the first experimental observation of reaction products of each, theoretically predicted, dissociation channel. These results thus overcome a 15 year old experiment/theory disconnect and make possible a variety of intriguing experiments that promise to provide significant new insights into water/Al2O3 and water/oxide interaction more generally. Y1 - 2014 U6 - https://doi.org/10.1021/jp502106t SN - 1932-7447 VL - 118 IS - 25 SP - 13623 EP - 13630 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Melani, Giacomo A1 - Nagata, Yuki A1 - Campen, Richard Kramer A1 - Saalfrank, Peter T1 - Vibrational spectra of dissociatively adsorbed D2O on Al-terminated alpha-Al2O3(0001) surfaces from ab initio molecular dynamics JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Water can adsorb molecularly or dissociatively onto different sites of metal oxide surfaces. These adsorption sites can be disentangled using surface-sensitive vibrational spectroscopy. Here, we model Vibrational Sum Frequency (VSF) spectra for various forms of dissociated, deuterated water on a reconstructed, Al-terminated α-Al2O3(0001) surface at submonolayer coverages (the so-called 1-2, 1-4, and 1-4′ modes). Using an efficient scheme based on velocity-velocity autocorrelation functions, we go beyond previous normal mode analyses by including anharmonicity, mode coupling, and thermal surface motion in the framework of ab initio molecular dynamics. In this way, we calculate vibrational density of states curves, infrared, and VSF spectra. Comparing computed VSF spectra with measured ones, we find that relative frequencies of resonances are in quite good agreement and linewidths are reasonably well represented, while VSF intensities coincide not well. We argue that intensities are sensitively affected by local interactions and thermal fluctuations, even at such low coverage, while absolute peak positions strongly depend on the choice of the electronic structure method and on the appropriate inclusion of anharmonicity. Y1 - 2019 U6 - https://doi.org/10.1063/1.5099895 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 24 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Heiden, Sophia A1 - Wirth, Jonas A1 - Campen, Richard Kramer A1 - Saalfrank, Peter T1 - Water molecular beam scattering at alpha-Al2O3(0001) BT - an ab initio molecular dynamics study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Recent molecular beam experiments have shown that water may adsorb molecularly or dissociatively on an α-Al2O3(0001) surface, with enhanced dissociation probability compared to “pinhole dosing”, i.e., adsorption under thermal equilibrium conditions. However, precise information on the ongoing reactions and their relative probabilities is missing. In order to shed light on molecular beam scattering for this system, we perform ab initio molecular dynamics calculations to simulate water colliding with α-Al2O3(0001). We find that single water molecules hitting a cold, clean surface from the gas phase are either reflected, molecularly adsorbed, or dissociated (so-called 1–2 dissociation only). A certain minimum translational energy (above 0.1 eV) seems to be required to enforce dissociation, which may explain the higher dissociation probability in molecular beam experiments. When the surface is heated and/or when refined surface and beam models are applied (preadsorption with water or water fragments, clustering and internal preexcitation in the beam), additional channels open, among them physisorption, water clustering on the surface, and so-called 1–4 and 1–4′ dissociation. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b04179 SN - 1932-7447 VL - 122 IS - 27 SP - 15494 EP - 15504 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Heiden, Sophia A1 - Yue, Yanhua A1 - Kirsch, Harald A1 - Wirth, Jonas A. A1 - Saalfrank, Peter A1 - Campen, Richard Kramer T1 - Water dissociative adsorption on α-Al2O3(112̅0) is controlled by surface site undercoordination, density, and topology JF - The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces N2 - α-Al2O3 surfaces are common in a wide variety of applications and useful models of more complicated, environmentally abundant, alumino-silicate surfaces. While decades of work have clarified that all properties of these surfaces depend sensitively on the crystal face and the presence of even small amounts of water, quantitative insight into this dependence has proven challenging. Overcoming this challenge requires systematic study of the mechanism by which water interacts with various α-Al2O3 surfaces. Such insight is most easily gained for the interaction of small amounts of water with surfaces in ultra high vacuum. In this study, we continue our combined theoretical and experimental approach to this problem, previously applied to water interaction with the α-Al2O3 (0001) and (11̅02) surfaces, now to water interaction with the third most stable surface, that is, the (112̅0). Because we characterize all three surfaces using similar tools, it is straightforward to conclude that the (112̅0) is most reactive with water. The most important factor explaining its increased reactivity is that the high density of undercoordinated surface Al atoms on the (112̅0) surface allows the bidentate adsorption of OH fragments originating from dissociatively adsorbed water, while only monodentate adsorption is possible on the (0001) and (11̅02) surfaces: the reactivity of α-Al2O3 surfaces with water depends strongly, and nonlinearly, on the density of undercoordinated surface Al atoms. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.7b10410 SN - 1932-7447 VL - 122 IS - 12 SP - 6573 EP - 6584 PB - American Chemical Society CY - Washington ER -