TY - JOUR A1 - Braune, Annett A1 - Maul, Ronald A1 - Schebb, Nils Helge A1 - Kulling, Sabine E. A1 - Blaut, Michael T1 - The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota N2 - Intestinal bacteria may influence bioavailability and physiological activity of dietary isoflavones. We therefore investigated the ability of human intestinal microbiota to convert irilone and genistein in vitro. In contrast to genistein, irilone was largely resistant to transformation by fecal slurries of ten human subjects. The fecal microbiota converted genistein to dihydrogenistein, 6'-hydroxy-O-desmethylangolensin, and 2-(4-hydroxyphenyl)- propionic acid. However, considerable interindividual differences in the rate of genistein degradation and the pattern of metabolites formed from genistein were observed. Only one metabolite, namely dihydroirilone, was formed from irilone in minor amounts. In further experiments, Eubacterium ramulus, a prevalent flavonoid-degrading species of the human gut, was tested for transformation of irilone. In contrast to genistein, irilone was not converted by E. ramulus. Irilone only differs from genistein by a methylenedioxy group attached to the A-ring of the isoflavone skeleton. This substitution obviously restricts the degradability of irilone by human intestinal bacteria. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/109582333 U6 - https://doi.org/10.1002/mnfr.200900233 SN - 1613-4125 ER - TY - JOUR A1 - Nowotny, Kerstin A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Braune, Sabine A1 - Weber, Daniela A1 - Pignitter, Marc A1 - Somoza, Veronika A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Grune, Tilman T1 - Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging. KW - Advanced glycation end products KW - Aging KW - Apoptosis KW - Collagen KW - ER stress KW - Methylglyoxal KW - Redox homeostasis Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.03.022 SN - 0891-5849 SN - 1873-4596 VL - 120 SP - 102 EP - 113 PB - Elsevier CY - New York ER -