TY - JOUR A1 - Tockhorn, Philipp A1 - Sutter, Johannes A1 - Cruz Bournazou, Alexandros A1 - Wagner, Philipp A1 - Jäger, Klaus A1 - Yoo, Danbi A1 - Lang, Felix A1 - Grischek, Max A1 - Li, Bor A1 - Li, Jinzhao A1 - Shargaieva, Oleksandra A1 - Unger, Eva A1 - Al-Ashouri, Amran A1 - Köhnen, Eike A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Schlatmann, Rutger A1 - Rech, Bernd A1 - Stannowski, Bernd A1 - Albrecht, Steve A1 - Becker, Christiane T1 - Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells JF - Nature nanotechnology N2 - Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%. Y1 - 2022 U6 - https://doi.org/10.1038/s41565-022-01228-8 SN - 1748-3387 SN - 1748-3395 VL - 17 IS - 11 SP - 1214 EP - 1221 PB - Nature Publishing Group CY - London [u.a.] ER - TY - JOUR A1 - Liu, Xiaochun A1 - Jahn, Bor-Ming A1 - Dong, Shuwen A1 - Li, Huimin A1 - Oberhänsli, Roland T1 - Neoproterozoic granitoid did not record ultrahigh-pressure metamorphism from the Southern Dabieshan of China N2 - It has been often debated whether all granitic gneisses associated with coesite-bearing eclogites in southern Dabieshan, China, have also been subjected to ultrahigh-pressure (UHP) metamorphism. We show here that a metagranitoid adjacent to the Bixiling eclogite-ultramafic complex has preserved primary granitic textures and an igneous mineral assemblage of biotite + plagioclase + microcline + quartz + allanite +/- amphibole. The absence of UPH recrystallization for the metagranitoid is particularly manifested by the conservation of euhedral-zoned plagioclase phenocrysts, the lack of corona garnets around igneous biotite, and the presence of an igneous mineral assemblage in zircons. The only metamorphic overprint was the epidote-amphibolite facies metamorphism characterized by the assemblage of biotite + phengiticmica + epidote + albite + K-feldspar + quartz +/- amphibole Metamorphic conditions are estimated at ca. 550degrees-680degreesC and 6-13 kbar for the metagranitoid and its amphibolitic enclave. Geochemically, the metagranitoid is similar to its country gneiss and shows an affinity to volcanic arc granitoid. Zircon U-Pb dating suggests that the Bixiling metagranitoid was emplaced during the Neoproterozoic (729+/-4 Ma), when most other granitic rocks and the protoliths of eclogite were also formed in Dabieshan. Taking into account the discovery of non-UHP granitic gneisses in other places, we argue that part of Neoproterozoic granitic rocks in the Dabieshan and Sulu terranes have escaped UHP metamorphism during the Triassic deep subduction of the continental crust as a consequence of a lack of penetrative deformation and fluid-rock interaction Y1 - 2003 SN - 0022-1376 ER -