TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau N2 - In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12–30 m), and ALOS World 3D (5–30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12–30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m=n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2–8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 338 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396277 ER - TY - GEN A1 - Atmani, Farid A1 - Bookhagen, Bodo A1 - Smith, Taylor T1 - Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1275 KW - ICESat-2 KW - GEDI KW - canopy height KW - lidar KW - savanna Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569915 SN - 1866-8372 IS - 1275 ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Multiband (X, C, L) radar amplitude analysis for a mixed sand- and gravel-bed river in the eastern Central Andes JF - Remote sensing of environment : an interdisciplinary journal N2 - Synthetic Aperture Radar (SAR) amplitude measurements from spaceborne sensors are sensitive to surface roughness conditions near their radar wavelength. These backscatter signals are often exploited to assess the roughness of plowed agricultural fields and water surfaces, and less so to complex, heterogeneous geological surfaces. The bedload of mixed sand- and gravel-bed rivers can be considered a mixture of smooth (compacted sand) and rough (gravel) surfaces. Here, we assess backscatter gradients over a large high-mountain alluvial river in the eastern Central Andes with aerially exposed sand and gravel bedload using X-band TerraSAR-X/TanDEM-X, C-band Sentinel-1, and L-band ALOS-2 PALSAR-2 radar scenes. In a first step, we present theory and hypotheses regarding radar response to an alluvial channel bed. We test our hypotheses by comparing backscatter responses over vegetation-free endmember surfaces from inside and outside of the active channel-bed area. We then develop methods to extract smoothed backscatter gradients downstream along the channel using kernel density estimates. In a final step, the local variability of sand-dominated patches is analyzed using Fourier frequency analysis, by fitting stretched-exponential and power-law regression models to the 2-D power spectrum of backscatter amplitude. We find a large range in backscatter depending on the heterogeneity of contiguous smooth- and rough-patches of bedload material. The SAR amplitude signal responds primarily to the fraction of smooth-sand bedload, but is further modified by gravel elements. The sensitivity to gravel is more apparent in longer wavelength L-band radar, whereas C- and X-band is sensitive only to sand variability. Because the spatial extent of smooth sand patches in our study area is typically< 50 m, only higher resolution sensors (e.g., TerraSAR-X/TanDEM-X) are useful for power spectrum analysis. Our results show the potential for mapping sand-gravel transitions and local geomorphic complexity in alluvial rivers with aerially exposed bedload using SAR amplitude. KW - SAR amplitude KW - Radar backscatter KW - Surface roughness KW - Fluvial KW - geomorphology KW - TerraSAR-X/TanDEM-X KW - Sentinel-1 KW - ALOS-2 PALSAR-2 Y1 - 2020 U6 - https://doi.org/10.1016/j.rse.2020.111799 SN - 0034-4257 SN - 1879-0704 VL - 246 PB - Elsevier CY - New York ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Tracking downstream variability in large grain-size distributions in the South-Central Andes JF - Journal of geophysical research : F, Earth surface N2 - Mixed sand- and gravel-bed rivers record erosion, transport, and fining signals in their bedload size distributions. Thus, grain-size data are imperative for studying these processes. However, collecting hundreds to thousands of pebble measurements in steep and dynamic high-mountain river settings remains challenging. Using the recently published digital grain-sizing algorithm PebbleCounts, we were able to survey seven large (>= 1,000 m2) channel cross-sections and measure thousands to tens-of-thousands of grains per survey along a 100-km stretch of the trunk stream of the Toro Basin in Northwest Argentina. The study region traverses a steep topographic and environmental gradient on the eastern margin of the Central Andean Plateau. Careful counting and validation allows us to identify measurement errors and constrain percentile uncertainties using large sample sizes. In the coarse >= 2.5 cm fraction of bedload, only the uppermost size percentiles (>= 95th) vary significantly downstream, whereas the 50th and 84th percentiles show less variability. We note a relation between increases in these upper percentiles and along-channel junctions with large, steep tributaries. This signal is strongly influenced by lithology and geologic structures, and mixed with local hillslope input. In steep catchments like the Toro Basin, we suggest nonlinear relationships between geomorphic metrics and grain size, whereby the steepest parts of the landscape exert primary control on the upper grain-size percentiles. Thus, average or median metrics that do not apply weights or thresholds to steeper topography may be less predictive of grain-size distributions in such settings. KW - digital grain sizing KW - downstream fining KW - fluvial geomorphology KW - grain-size distribution KW - pebblecounts Y1 - 2021 U6 - https://doi.org/10.1029/2021JF006260 SN - 2169-9003 SN - 2169-9011 VL - 126 IS - 8 SP - 1 EP - 29 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Olen, Stephanie M. A1 - Bookhagen, Bodo T1 - Applications of SAR interferometric coherence time series BT - satiotemporal dynamics of geomorphic transitions in the South-Central Andes JF - Journal of geophysical research : Earth surface N2 - Sediment transport domains in mountain landscapes are characterized by fundamentally different processes and rates depending on several factors, including geology, climate, and biota. Accurately identifying where transitions between transport domains occur is an important step to quantify the past, present, and future contribution of varying erosion and sedimentation processes and enhance our predictive capabilities. We propose a new methodology based on time series of synthetic aperture radar (SAR) interferometric coherence images to map sediment transport regimes across arid and semiarid landscapes. Using 4 years of Sentinel-1 data, we analyze sediment transport regimes for the south-central Andes in northwestern Argentina characterized by steep topographic and climatic gradients. We observe seasonally low coherence during the regional wet season, particularly on hillslopes and in alluvial channels. The spatial distribution of coherence is compared to drainage areas extracted from digital topography to identify two distinct transitions within watersheds: (a) a hillslope-to-fluvial and (b) a fluvial-to-alluvial transition. While transitions within a given basin can be well-constrained, the relative role of each sediment transport domain varies widely over the climatic and topographic gradients. In semiarid regions, we observe larger relative contributions from hillslopes compared to arid regions. Across regional gradients, the range of coherence within basins positively correlates to previously published millennial catchment-wide erosion rates and to topographic metrics used to indicate long-term uplift. Our study suggests that a dense time series of interferometric coherence can be used as a proxy for surface sediment movement and landscape stability in vegetation-free settings at event to decadal timescales. KW - Copernicus KW - SAR KW - critical infrastructure resilience KW - early warning KW - landslides Y1 - 2020 U6 - https://doi.org/10.1029/2019JF005141 SN - 2169-9003 SN - 2169-9011 VL - 125 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Topography and climate in the upper Indus Basin BT - Mapping elevation-snow cover relationships JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data. KW - Snow-cover KW - Hierarchical clustering KW - Glaciers KW - Upper Indus Basin Y1 - 2021 U6 - https://doi.org/10.1016/j.scitotenv.2021.147363 SN - 0048-9697 SN - 1879-1026 VL - 786 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Climatic and biotic controls on topographic asymmetry at the global scale JF - Journal of geophysical research : JGR, Earth surface N2 - Insolation differences play a primary role in controlling microclimate and vegetation cover, which together influence the development of topography. Topographic asymmetry (TA), or slope differences between terrain aspects, has been well documented in small-scale, field-based, and modeling studies. Here we combine a suite of environmental (e.g., vegetation, temperature, solar insolation) and topographic (e.g., elevation, drainage network) data to explore the driving mechanisms and markers of TA on a global scale. Using a novel empirical TA analysis method, we find that (1) steeper terrain has higher TA magnitudes, (2) globally, pole-facing terrain is on average steeper than equator-facing terrain, especially in mid-latitude, tectonically quiescent, and vegetated landscapes, and (3) high-elevation and low-temperature regions tend to have terrain steepened toward the equator. We further show that there are distinct differences in climate and vegetation cover across terrain aspects, and that TA is reflected in the size and form of fluvial drainage networks. Our work supports the argument that insolation asymmetries engender differences in local microclimates and vegetation on opposing terrain aspects, which broadly encourage the development of asymmetric topography across a range of lithologic, tectonic, geomorphic, and climatic settings. KW - erosion KW - freeze-thaw cycling KW - solar radiation KW - topographic asymmetry KW - topography KW - vegetation cover Y1 - 2021 U6 - https://doi.org/10.1029/2020JF005692 SN - 2169-9003 SN - 2169-9011 VL - 126 IS - 1 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Atmani, Farid A1 - Bookhagen, Bodo A1 - Smith, Taylor T1 - Measuring vegetation heights and their seasonal changes in the Western Namibian Savanna using spaceborne lidars JF - Remote sensing / Molecular Diversity Preservation International (MDPI) N2 - The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes. KW - ICESat-2 KW - GEDI KW - canopy height KW - lidar KW - savanna Y1 - 2022 U6 - https://doi.org/10.3390/rs14122928 SN - 2072-4292 VL - 14 IS - 12 SP - 1 EP - 20 PB - MDPI CY - Basel, Schweiz ET - 12 ER - TY - CHAP A1 - Bookhagen, Bodo ED - Prins, Herbert H.T. ED - Namgail, Tsewang T1 - The influence of hydrology and glaciology on wetlands in the Himalayas T2 - Bird migration across the Himalayas : wetland functioning amidst mountains and glaciers N2 - Birds migrating across the Himalayan region fly over the highest peaks in the world, facing immense physiological and climatic challenges. The authors show the different strategies used by birds to cope with these challenges. Many wetland avian species are seen in the high-altitude lakes of the Himalayas and the adjoining Tibetan Plateau, such as Bar-Headed Geese. Ringing programmes have generated information about origins and destinations, and this book is the first to present information on the bird's exact migratory paths. Capitalising on knowledge generated through satellite telemetry, the authors describe the migratory routes of a multitude of birds flying over or skirting the Himalayas. The myriad of threats to migratory birds and the wetland system in the Central Asian Flyway are discussed, with ways to mitigate them. This volume will inform and persuade policy-makers and conservation practitioners to take appropriate measures for the long-term survival of this unique migration Y1 - 2017 SN - 978-1-107-11471-5 SN - 978-1-316-33542-0 U6 - https://doi.org/10.1017/9781316335420 SP - 175 EP - 188 PB - Cambridge University Press CY - Cambridge ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1020 KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484176 SN - 1866-8372 IS - 1020 ER - TY - JOUR A1 - Loibl, David A1 - Bookhagen, Bodo A1 - Valade, Sebastien A1 - Schneider, Christoph T1 - OSARIS, the "Open Source SAR Investigation System" for Automatized Parallel InSAR Processing of Sentinel-1 Time Series Data With Special Emphasis on Cryosphere Applications JF - Frontiers in Earth Science N2 - With the advent of the two Sentinel-1 (S1) satellites, Synthetic Aperture Radar (SAR) data with high temporal and spatial resolution are freely available. This provides a promising framework to facilitate detailed investigations of surface instabilities and movements on large scales with high temporal resolution, but also poses substantial processing challenges because of storage and computation requirements. Methods are needed to efficiently detect short term changes in dynamic environments. Approaches considering pair-wise processing of a series of consecutive scenes to retain maximum temporal resolution in conjunction with time series analyses are required. Here we present OSARIS, the “Open Source SAR Investigation System,” as a framework to process large stacks of S1 data on high-performance computing clusters. Based on Generic Mapping Tools SAR, shell scripts, and the workload manager Slurm, OSARIS provides an open and modular framework combining parallelization of high-performance C programs, flexible processing schemes, convenient configuration, and generation of geocoded stacks of analysis-ready base data, including amplitude, phase, coherence, and unwrapped interferograms. Time series analyses can be conducted by applying automated modules to the data stacks. The capabilities of OSARIS are demonstrated in a case study from the northwestern Tien Shan, Central Asia. After merging of slices, a total of 80 scene pairs were processed from 174 total input scenes. The coherence time series exhibits pronounced seasonal variability, with relatively high coherence values prevailing during the summer months in the nival zone. As an example of a time series analysis module, we present OSARIS' “Unstable Coherence Metric” which identifies pixels affected by significant drops from high to low coherence values. Measurements of motion provided by LOSD measurements require careful evaluation because interferometric phase unwrapping is prone to errors. Here, OSARIS provides a series of modules to detect and mask unwrapping errors, correct for atmospheric disturbances, and remove large-scale trends. Wall clock processing time for the case study (area ~9,000 km2) was ~12 h 4 min on a machine with 400 cores and 2 TB RAM. In total, ~12 d 10 h 44 min (~96%) were saved through parallelization. A comparison of selected OSARIS datasets to results from two state-of-the-art SAR processing suites, ISCE and SNAP, shows that OSARIS provides products of competitive quality despite its high level of automatization. OSARIS thus facilitates efficient S1-based region-wide investigations of surface movement events over multiple years. KW - remote sensing KW - InSAR KW - high mountain environments KW - rock glacier KW - sentinel-1 KW - time series analysis Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00172 SN - 2296-6463 VL - 7 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Brieger, Frederic A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Bookhagen, Bodo A1 - Zakharov, Evgenii S. A1 - Kruse, Stefan T1 - Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds JF - Remote sensing N2 - Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra–taiga ecotone should be adapted to the forest structure and have a radius of >15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure. KW - UAV KW - photogrammetry KW - remote sensing KW - structure from motion KW - tundra-taiga ecotone KW - point cloud KW - forest structure Y1 - 2019 U6 - https://doi.org/10.3390/rs11121447 SN - 2072-4292 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Weldeab, Syee A1 - Rühlemann, Carsten A1 - Bookhagen, Bodo A1 - Pausata, Francesco S. R. A1 - Perez-Lua, Fabiola M. T1 - Enhanced Himalayan glacial melting during YD and H1 recorded in the Northern Bay of Bengal JF - Geochemistry, geophysics, geosystems N2 - Ocean-land thermal feedback mechanisms in the Indian Summer Monsoon (ISM) domain are an important but not well understood component of regional climate dynamics. Here we present a O-18 record analyzed in the mixed-layer dwelling planktonic foraminifer Globigerinoides ruber (sensu stricto) from the northernmost Bay of Bengal (BoB). The O-18 time series provides a spatially integrated measure of monsoonal precipitation and Himalayan meltwater runoff into the northern BoB and reveals two brief episodes of anomalously low O-18 values between 16.30.4 and 160.5 and 12.60.4 and 12.30.4 thousand years before present. The timing of these events is centered at Heinrich event 1 and the Younger Dryas, well-known phases of weak northern hemisphere monsoon systems. Numerical climate model experiments, simulating Heinrich event-like conditions, suggest a surface warming over the monsoon-dominated Himalaya and foreland in response to ISM weakening. Corroborating the simulation results, our analysis of published moraine exposure ages in the monsoon-dominated Himalaya indicates enhanced glacier retreats that, considering age model uncertainties, coincide and overlap with the episodes of anomalously low O-18 values in the northernmost BoB. Our climate proxy and simulation results provide insights into past regional climate dynamics, suggesting reduced cloud cover, increased solar radiation, and air warming of the Himalaya and foreland areas and, as a result, glacier mass losses in response to weakened ISM. Plain Language Summary Indian Summer Monsoon rainfall and Himalayan glacier/snow melts constitute the main water source for the densely populated Indian subcontinent. Better understanding of how future climate changes will affect the monsoon rainfall and Himalayan glaciers requires a long climate record. In this study, we create a 13,000-year-long climate record that allows us to better understand the response of Indian Summer Monsoon rainfall and Himalayan glaciers to past climate changes. The focus of our study is the time window between 9,000 and 22,000 years ago, an episode where the global climate experienced large and rapid changes. Our sediment record from the northern Bay of Bengal and climate change simulation indicate that during episodes of weak monsoon, the melting of the Himalayan glaciers increases substantially significantly. This is because the weakening of the monsoon results in less cloud cover and, as a result, the surface receives more sunlight and causes glacier melting. KW - Bay of Bengal KW - Indian Summer Monsoon KW - Himalayan glacier meltwater KW - runoff KW - Younger Dryas KW - Heinrich event 1 Y1 - 2019 U6 - https://doi.org/10.1029/2018GC008065 SN - 1525-2027 VL - 20 IS - 5 SP - 2449 EP - 2461 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Merchel, Silke A1 - Gärtner, Andreas A1 - Beutner, Sabrina A1 - Bookhagen, Bodo A1 - Chabilan, Amelie T1 - Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz for Be-10 and Al-26 analysis JF - Nuclear instruments & methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Section B, Beam interactions with materials and atoms N2 - The purity of the analysed samples (e.g. quartz) with respect to chemical composition and radionuclide contamination is essential for geomorphologic applications using so-called terrestrial cosmogenic nuclides (TCNs). To guarantee this, numerous cleaning and dissolution procedures have been developed. At the DREsden Accelerator Mass Spectrometry (DREAMS) facility, we also work on enhancing the chemical quartz-enrichment methodology from bulk rock and dissolution of quartz. Repeated exposure of the bulk material to acid mixtures (HCl/H2SiF6) at room temperature for cleaning and its monitoring by optical microscopy works for most quartz-rich samples. The quartz dissolution in HF under rather mild conditions (at room temperature on a shaker-table) has the advantage to leave difficult-to-dissolve minerals (e.g., tourmaline, zircon, rutile, sillimanite, kyanite, chromite, corundum), not separated by other physical methods before, as residue. Our comparison with a high-temperature dissolution method (in a microwave) indicates an additional amount of interfering elements, such as in average about 3 mg of Ti, more than 7 mg of Al, and about 22 mu g of Be (for 50 g SiO2), is added to the sample, hence showing the superiority of our mild method. This way, we reduce problems for chemistry and AMS, but also ensure better comparability to production rates of cleaner stoichiometric quartz from calibration sites. KW - Accelerator mass spectrometry KW - In-situ KW - Terrestrial cosmogenic nuclide KW - Residue KW - Quartz Y1 - 2019 U6 - https://doi.org/10.1016/j.nimb.2019.02.007 SN - 0168-583X SN - 1872-9584 VL - 455 SP - 293 EP - 299 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Clubb, Fiona J. A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - Clustering river profiles to classify geomorphic domains JF - Journal of geophysical research : Earth surface N2 - The structure and organization of river networks has been used for decades to investigate the influence of climate and tectonics on landscapes. The majority of these studies either analyze rivers in profile view by extracting channel steepness or calculate planform metrics such as drainage density. However, these techniques rely on the assumption of homogeneity: that intrinsic and external factors are spatially or temporally invariant over the measured profile. This assumption is violated for the majority of Earth's landscapes, where variations in uplift rate, rock strength, climate, and geomorphic process are almost ubiquitous. We propose a method for classifying river profiles to identify landscape regions with similar characteristics by adapting hierarchical clustering algorithms developed for time series data. We first test our clustering on two landscape evolution scenarios and find that we can successfully cluster regions with different erodibility and detect the transient response to sudden base level fall. We then test our method in two real landscapes: first in Bitterroot National Forest, Idaho, where we demonstrate that our method can detect transient incision waves and the topographic signature of fluvial and debris flow process regimes; and second, on Santa Cruz Island, California, where our technique identifies spatial patterns in lithology not detectable through normalized channel steepness analysis. By calculating channel steepness separately for each cluster, our method allows the extraction of more reliable steepness metrics than if calculated for the landscape as a whole. These examples demonstrate the method's ability to disentangle fluvial morphology in complex lithological and tectonic settings. KW - clustering KW - river networks KW - topographic analysis KW - landscape evolution modeling Y1 - 2019 U6 - https://doi.org/10.1029/2019JF005025 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 6 SP - 1417 EP - 1439 PB - American Geophysical Union CY - Hoboken ER - TY - JOUR A1 - Rheinwahlt, Aljoscha A1 - Goswami, Bedartha A1 - Bookhagen, Bodo T1 - A network-based flow accumulation algorithm for point clouds BT - Facet-Flow Networks (FFNs) JF - Journal of geophysical research : Earth surface N2 - Flow accumulation algorithms estimate the steady state of flow on real or modeled topographic surfaces and are crucial for hydrological and geomorphological assessments, including delineation of river networks, drainage basins, and sediment transport processes. Existing flow accumulation algorithms are typically designed to compute flows on regular grids and are not directly applicable to arbitrarily sampled topographic data such as lidar point clouds. In this study we present a random sampling scheme that generates homogeneous point densities, in combination with a novel flow path tracing approach-the Facet-Flow Network (FFN)-that estimates flow accumulation in terms of specific catchment area (SCA) on triangulated surfaces. The random sampling minimizes biases due to spatial sampling and the FFN allows for direct flow estimation from point clouds. We validate our approach on a Gaussian hill surface and study the convergence of its SCA compared to the analytical solution. Here, our algorithm outperforms the multiple flow direction algorithm, which is optimized for divergent surfaces. We also compute the SCA of a 6-km(2)-steep, vegetated catchment on Santa Cruz Island, California, based on airborne lidar point-cloud data. Point-cloud-based SCA values estimated by our method compare well with those estimated by the D-infinity or multiple flow direction algorithm on gridded data. The advantage of computing SCA from point clouds becomes relevant especially for divergent topography and for small drainage areas: These are depicted with much more detail due to the higher sampling density of point clouds. KW - point clouds KW - drainage networks KW - lidar KW - tin KW - surface runoff KW - spatial sampling Y1 - 2019 U6 - https://doi.org/10.1029/2018JF004827 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 7 SP - 2013 EP - 2033 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data JF - Frontiers in Earth Science N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - https://doi.org/10.3389/feart.2020.559175 SN - 2296-6463 VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Olen, Stephanie M. A1 - Bookhagen, Bodo T1 - Mapping Damage-Affected Areas after Natural Hazard Events Using Sentinel-1 Coherence Time Series T2 - remote sensing N2 - The emergence of the Sentinel-1A and 1B satellites now offers freely available and widely accessible Synthetic Aperture Radar (SAR) data. Near-global coverage and rapid repeat time (6–12 days) gives Sentinel-1 data the potential to be widely used for monitoring the Earth’s surface. Subtle land-cover and land surface changes can affect the phase and amplitude of the C-band SAR signal, and thus the coherence between two images collected before and after such changes. Analysis of SAR coherence therefore serves as a rapidly deployable and powerful tool to track both seasonal changes and rapid surface disturbances following natural disasters. An advantage of using Sentinel-1 C-band radar data is the ability to easily construct time series of coherence for a region of interest at low cost. In this paper, we propose a new method for Potentially Affected Area (PAA) detection following a natural hazard event. Based on the coherence time series, the proposed method (1) determines the natural variability of coherence within each pixel in the region of interest, accounting for factors such as seasonality and the inherent noise of variable surfaces; and (2) compares pixel-by-pixel syn-event coherence to temporal coherence distributions to determine where statistically significant coherence loss has occurred. The user can determine to what degree the syn-event coherence value (e.g., 1st, 5th percentile of pre-event distribution) constitutes a PAA, and integrate pertinent regional data, such as population density, to rank and prioritise PAAs. We apply the method to two case studies, Sarpol-e, Iran following the 2017 Iran-Iraq earthquake, and a landslide-prone region of NW Argentina, to demonstrate how rapid identification and interpretation of potentially affected areas can be performed shortly following a natural hazard event. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 471 KW - Sentinel-1 KW - natural hazards KW - rapid damage mapping KW - coherence KW - potentially affected areas (PAA) Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417766 ER - TY - JOUR A1 - Neely, Alexander B. A1 - Bookhagen, Bodo A1 - Burbank, Douglas W. T1 - An automated knickzone selection algorithm (KZ-Picker) to analyze transient landscapes: Calibration and validation JF - Journal of geophysical research : Earth surface N2 - Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base-level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a -space (drainage-area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30m resolution digital elevation models (DEMs) of six catchments (trunk-stream lengths: 2.1-5.4km) on Santa Cruz Island, southern California. On the 1m DEM, algorithm-selected knickzones confirm 93% of handpicked knickzone positions (n=178) to a spatial accuracy of 100m, 88% to an accuracy within 50m, and 46% to an accuracy within 10m. Using 10 and 30m DEMs, accuracy is similar: 88-86% to 100m and 82% to 50m (n=38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land-use, or changes in climate, all factors that can produce measurable differences in river morphology over time. KW - knickpoint KW - transient KW - knickzone KW - incision KW - relict landscape KW - Santa Cruz Island Y1 - 2017 U6 - https://doi.org/10.1002/2017JF004250 SN - 2169-9003 SN - 2169-9011 VL - 122 SP - 1236 EP - 1261 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - identified with an automated snowmelt detection algorithm, 1987-2016 JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - High Mountain Asia (HMA) – encompassing the Tibetan Plateau and surrounding mountain ranges – is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season – defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3–5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade−1 over the 29-year study period (5–25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002–2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers – such as the Karakoram and Kunlun Shan – see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous. Y1 - 2017 U6 - https://doi.org/10.5194/tc-11-2329-2017 SN - 1994-0416 SN - 1994-0424 VL - 11 SP - 2329 EP - 2343 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Bufe, Aaron A1 - Burbank, Douglas W. A1 - Liu, Langtao A1 - Bookhagen, Bodo A1 - Qin, Jintang A1 - Chen, Jie A1 - Li, Tao A1 - Jobe, Jessica Ann Thompson A1 - Yang, Huili T1 - Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China JF - Journal of geophysical research : Earth surface N2 - Fluvial planation surfaces, such as straths, commonly serve as recorders of climatic and tectonic changes and are formed by the lateral erosion of rivers, a process that remains poorly understood. Here we present a study of kilometer-wide, fluvially eroded, low-relief surfaces on rapidly uplifting folds in the foreland of the southwestern Tian Shan. A combination of field work, digital elevation model analysis, and dating of fluvial deposits reveals that despite an arid climate and rapid average rock-uplift rates of 1-3mm/yr, rivers cut extensive (>1-2km wide) surfaces with typical height variations of <6m over periods of >2-6kyr. The extent of this beveling varies in space and time, such that different beveling episodes affect individual structures. Between times of planation, beveled surfaces are abandoned, incised, and deformed across the folds. In a challenge to models that link strath cutting and abandonment primarily to changes in river incision rates, we demonstrate that lateral erosion rates of antecedent streams crossing the folds have to vary by more than 1 order of magnitude to explain the creation of beveled platforms in the past and their incision at the present day. These variations do not appear to covary with climate variability and might be caused by relatively small (much less than an order of magnitude) changes in sediment or water fluxes. It remains uncertain in which settings variations in lateral bedrock erosion rates predominate over changes in vertical erosion rates. Therefore, when studying fluvial planation and strath terraces, variability of both lateral and vertical erosion rates should be considered. KW - strath terraces KW - lateral erosion KW - detachment folds KW - Quaternary geochronology Y1 - 2017 U6 - https://doi.org/10.1002/2016JF004099 SN - 2169-9003 SN - 2169-9011 VL - 122 SP - 2431 EP - 2467 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Boers, Niklas A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50%). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20% of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20 degrees S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20 degrees S and the Puna Plateau originates from southeastern South America. KW - Extreme rainfall KW - Synchronization KW - Complex networks KW - South American monsoon system Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2601-6 SN - 0930-7575 SN - 1432-0894 VL - 46 SP - 601 EP - 617 PB - Springer CY - New York ER - TY - JOUR A1 - Norris, Jesse A1 - Carvalho, Leila M. V. A1 - Jones, Charles A1 - Cannon, Forest A1 - Bookhagen, Bodo A1 - Palazzi, Elisa A1 - Tahir, Adnan Ahmad T1 - The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya. KW - WRF KW - Himalayas KW - Mesoscale KW - Precipitation KW - Climate change KW - Orographicprecipitation KW - Water resources Y1 - 2017 U6 - https://doi.org/10.1007/s00382-016-3414-y SN - 0930-7575 SN - 1432-0894 VL - 49 SP - 2179 EP - 2204 PB - Springer CY - New York ER - TY - JOUR A1 - Bufe, Aaron A1 - Bekaert, David P. S. A1 - Hussain, Ekbal A1 - Bookhagen, Bodo A1 - Burbank, Douglas W. A1 - Jobe, Jessica Ann Thompson A1 - Chen, Jie A1 - Li, Tao A1 - Liu, Langtao A1 - Gan, Weijun T1 - Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data JF - Geophysical research letters N2 - Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years). KW - InSAR KW - Tian Shan KW - folds KW - uplift rate changes KW - geologic versus geodetic rates KW - continental neotectonics Y1 - 2017 U6 - https://doi.org/10.1002/2017GL073627 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 10977 EP - 10987 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Neelmeijer, Julia A1 - Motagh, Mandi A1 - Bookhagen, Bodo T1 - High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia JF - ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing N2 - This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. KW - TanDEM-X KW - InSAR KW - DEM generation KW - Inter-annual glacier elevation change KW - Inylchek Glacier Y1 - 2017 U6 - https://doi.org/10.1016/j.isprsjprs.2017.05.011 SN - 0924-2716 SN - 1872-8235 VL - 130 SP - 108 EP - 121 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Cannon, Forest T1 - Improving semi-automated glacier mapping with a multi-method approach BT - applications in central Asia T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Studies of glaciers generally require precise glacier outlines. Where these are not available, extensive manual digitization in a geographic information system (GIS) must be performed, as current algorithms struggle to delineate glacier areas with debris cover or other irregular spectral profiles. Although several approaches have improved upon spectral band ratio delineation of glacier areas, none have entered wide use due to complexity or computational intensity. In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique velocity and topographic characteristics of glaciers and further leverages spectral and spatial relationship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as compared to a similar to 750 glacier control data set, and can reliably classify a given Landsat scene in 3-5 min. The algorithm does not completely solve the difficulties inherent in classifying glacier areas from remotely sensed imagery but does represent a significant improvement over purely spectral-based classification schemes, such as the band ratio of Landsat 7 bands three and five or the normalized difference snow index. The main caveats of the algorithm are (1) classification errors at an individual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3) dependence on fidelity of the input Landsat data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 510 KW - debris-covered glaciers KW - land ice measurements KW - remote-sensing data KW - thematic mapper KW - glims project KW - aster data KW - inventory KW - area KW - deformation KW - parameters Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408471 SN - 1866-8372 IS - 510 ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia JF - Remote sensing of environment : an interdisciplinary journal N2 - Snowfall comprises a significant percentage of the annual water budget in High Mountain Asia (HMA), but snow water equivalent (SWE) is poorly constrained due to lack of in-situ measurements and complex terrain that limits the efficacy of modeling and observations. Over the past few decades, SWE has been estimated with passive microwave (PM) sensors with generally good results in wide, flat, terrain, and lower reliability in densely forested, complex, or high-elevation areas. In this study, we use raw swath data from five satellite - sensors the Special Sensor Microwave/Imager (SSMI) and Special Sensor Microwave Imager/Sounder (SSMIS) (1987-2015, F08, F11, F13, F17), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E, 2002-2011), AMSR2 (2012-2015), and the Global Precipitation Measurement (GPM, 2014-2015) - in order to understand the spatial and temporal structure of native sensor, topographic, and land cover biases in SWE estimates in HMA. We develop a thorough understanding of the uncertainties in our SWE estimates by examining the impacts of topographic parameters (aspect, relief, hillslope angle, and elevation), land cover, native sensor biases, and climate parameters (precipitation, temperature, and wind speed). HMA, with its high seasonality, large topographic gradients and low relief at high elevations provides an excellent context to examine a wide range of climatic, land-cover, and topographic settings to better constrain SWE uncertainties and potential sensor bias. Using a multi-parameter regression, we compare long-term SWE variability to forest fraction, maximal multiyear snow depth, topographic parameters, and long-term average wind speed across both individual sensor time series and a merged multi-sensor dataset. In regions where forest cover is extensive, it is the strongest control on SWE variability. In those regions where forest density is low (<5%), maximal snow depth dominates the uncertainty signal. In our regression across HMA, we find that forest fraction is the strongest control on SWE variability (75.8%), followed by maximal multi-year snow depth (7.82%), 90th percentile 10-m wind speed of a 10-year December-January-February (DJF) time series (5.64%), 25th percentile DJF 10-m wind speed (5.44%), and hillslope angle (5.24%). Elevation, relief, and terrain aspect show very low influence on SWE variability (<1%). We find that the GPM sensor provides the most robust regression results, and can be reliably used to estimate SWE in our study region. While forest cover and elevation have been integrated into many SWE algorithms, wind speed and long-term maximal snow depth have not. Our results show that wind redistribution of snow can have impacts on SWE, especially over large, flat, areas. Using our regression results, we have developed an understanding of sensor specific SWE uncertainties and their spatial patterns. The uncertainty maps developed in this study provide a first-order approximation of SWE-estimate reliability for much of HMA, and imply that high-fidelity SWE estimates can be produced for many high-elevation areas. (C) 2016 Elsevier Inc. All rights reserved. KW - Snow-Water Equivalent KW - Passive Microwave KW - SSMI/S KW - AMSR-E KW - AMSR2 KW - GPM Y1 - 2016 U6 - https://doi.org/10.1016/j.rse.2016.03.037 SN - 0034-4257 SN - 1879-0704 VL - 181 SP - 174 EP - 185 PB - Elsevier CY - New York ER - TY - JOUR A1 - Wulf, Hendrik A1 - Bookhagen, Bodo A1 - Scherler, Dirk T1 - Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling JF - Advances in water resources N2 - Rivers draining the southern Himalaya provide most of the water supply for the densely populated Indo-Gangetic plains. Despite the importance of water resources in light of climate change, the relative contributions of rainfall, snow and glacier melt to discharge are not well understood, due to the scarcity of ground-based data in this complex terrain. Here, we quantify discharge sources in the Sutlej Valley, western Himalaya, from 2000 to 2012 with a distributed hydrological model that is based on daily, ground-calibrated remote-sensing observation. Based on the consistently good model performance, we analyzed the spatiotemporal distribution of hydrologic components and quantified their contribution to river discharge. Our results indicate that the Sutlej River's annual discharge at the mountain front is sourced to 55% by effective rainfall (rainfall reduced by evapotranspiration), 35% by snow melt and 10% by glacier melt. In the high-elevation orogenic interior glacial runoff contributes ∼30% to annual river discharge. These glacier melt contributions are especially important during years with substantially reduced rainfall and snowmelt runoff, as during 2004, to compensate for low river discharge and ensure sustained water supply and hydropower generation. In 2004, discharge of the Sutlej River totaled only half the maximum annual discharge; with 17.3% being sourced by glacier melt. Our findings underscore the importance of calibrating remote-sensing data with ground-based data to constrain hydrological models with reasonable accuracy. For instance, we found that TRMM (Tropical Rainfall Measuring Mission) product 3B42 V7 systematically overestimates rainfall in arid regions of our study area by a factor of up to 5. By quantifying the spatiotemporal distribution of water resources we provide an important assessment of the potential impact of global warming on river discharge in the western Himalaya. Given the near-global coverage of the utilized remote-sensing datasets this hydrological modeling approach can be readily transferred to other data-sparse regions. KW - Runoff modeling KW - MODIS KW - TRMM KW - Mountain hydrology KW - Sutlej River Y1 - 2016 U6 - https://doi.org/10.1016/j.advwatres.2015.12.004 SN - 0309-1708 SN - 1872-9657 VL - 88 SP - 152 EP - 169 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Forte, Adam M. A1 - Whipple, Kelin X. A1 - Bookhagen, Bodo A1 - Rossi, Matthew W. T1 - Decoupling of modern shortening rates, climate, and topography in the Caucasus JF - Earth & planetary science letters N2 - The Greater and Lesser Caucasus mountains and their associated foreland basins contain similar rock types, experience a similar two-fold, along-strike variation in mean annual precipitation, and were affected by extreme base-level drops of the neighboring Caspian Sea. However, the two Caucasus ranges are characterized by decidedly different tectonic regimes and rates of deformation that are subject to moderate (less than an order of magnitude) gradients in climate, and thus allow for a unique opportunity to isolate the effects of climate and tectonics in the evolution of topography within active orogens. There is an apparent disconnect between modern climate, shortening rates, and topography of both the Greater Caucasus and Lesser Caucasus which exhibit remarkably similar topography along-strike despite the gradients in forcing. By combining multiple datasets, we examine plausible causes for this disconnect by presenting a detailed analysis of the topography of both ranges utilizing established relationships between catchment-mean erosion rates and topography (local relief, hillslope gradients, and channel steepness) and combining it with a synthesis of previously published low-temperature thermochronologic data. Modern climate of the Caucasus region is assessed through an analysis of remotely-sensed data (TRMM and MODIS) and historical streamflow data. Because along-strike variation in either erosional efficiency or thickness of accreted material fail to explain our observations, we suggest that the topography of both the western Lesser and Greater Caucasus are partially supported by different geodynamic forces. In the western Lesser Caucasus, high relief portions of the landscape likely reflect uplift related to ongoing mantle lithosphere delamination beneath the neighboring East Anatolian Plateau. In the Greater Caucasus, maintenance of high topography in the western portion of the range despite extremely low (<2-4 mm/y) modern convergence rates may be related to dynamic topography from detachment of the north-directed Greater Caucasus slab or to a recent slowing of convergence rates. Large-scale spatial gradients in climate are not reflected in the topography of the Caucasus and do not seem to exert any significant control on the tectonics or structure of either range. (C) 2016 Elsevier B.V. All rights reserved. KW - tectonics KW - erosion KW - climate KW - dynamic topography KW - orogenic processes Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.06.013 SN - 0012-821X SN - 1385-013X VL - 449 SP - 282 EP - 294 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brell, Maximilian A1 - Rogass, Christian A1 - Segl, Karl A1 - Bookhagen, Bodo A1 - Guanter, Luis T1 - Improving Sensor Fusion: A Parametric Method for the Geometric Coalignment of Airborne Hyperspectral and Lidar Data JF - IEEE transactions on geoscience and remote sensing N2 - Synergistic applications based on integrated hyperspectral and lidar data are receiving a growing interest from the remote-sensing community. A prerequisite for the optimum sensor fusion of hyperspectral and lidar data is an accurate geometric coalignment. The simple unadjusted integration of lidar elevation and hyperspectral reflectance causes a substantial loss of information and does not exploit the full potential of both sensors. This paper presents a novel approach for the geometric coalignment of hyperspectral and lidar airborne data, based on their respective adopted return intensity information. The complete approach incorporates ray tracing and subpixel procedures in order to overcome grid inherent discretization. It aims at the correction of extrinsic and intrinsic (camera resectioning) parameters of the hyperspectral sensor. In additional to a tie-point-based coregistration, we introduce a ray-tracing-based back projection of the lidar intensities for area-based cost aggregation. The approach consists of three processing steps. First is a coarse automatic tie-point-based boresight alignment. The second step coregisters the hyperspectral data to the lidar intensities. Third is a parametric coalignment refinement with an area-based cost aggregation. This hybrid approach of combining tie-point features and area-based cost aggregation methods for the parametric coregistration of hyperspectral intensity values to their corresponding lidar intensities results in a root-mean-square error of 1/3 pixel. It indicates that a highly integrated and stringent combination of different coalignment methods leads to an improvement of the multisensor coregistration. KW - Airborne laser scanning (ALS) KW - coregistration KW - direct georeferencing KW - imaging spectroscopy KW - multisensor KW - parametric georeferencing KW - preprocessing KW - ray tracing KW - rigorous geocoding KW - sensor alignment KW - sensor fusion Y1 - 2016 U6 - https://doi.org/10.1109/TGRS.2016.2518930 SN - 0196-2892 SN - 1558-0644 VL - 54 SP - 3460 EP - 3474 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Stolbova, Veronika A1 - Surovyatkina, Elena A1 - Bookhagen, Bodo A1 - Kurths, Jürgen T1 - Tipping elements of the Indian monsoon: Prediction of onset and withdrawal JF - Geophysical research letters N2 - Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation. Y1 - 2016 U6 - https://doi.org/10.1002/2016GL068392 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 3982 EP - 3990 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Malik, Nishant A1 - Bookhagen, Bodo A1 - Mucha, Peter J. T1 - Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes JF - Geophysical research letters N2 - In this study, we provide a comprehensive analysis of trends in the extremes during the Indian summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the recent decades and may be associated with changing climatic conditions. Our analysis primarily relies on quantile regression that avoids making any subjective choices on spatial, temporal, or intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into climatic compartments that show different and partly opposing trends. These include strong trends toward intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily rain intensity leading to higher flood vulnerability. Our analysis helps explain previously contradicting results of trends in average ISM rainfall. Y1 - 2016 U6 - https://doi.org/10.1002/2016GL067841 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 1710 EP - 1717 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Beyond Vertical Point Accuracy BT - Assessing Inter-pixel Consistency in 30 m Global DEMs for the Arid Central Andes JF - Frontiers in Earth Science N2 - Quantitative geomorphic research depends on accurate topographic data often collected via remote sensing. Lidar, and photogrammetric methods like structure-from-motion, provide the highest quality data for generating digital elevation models (DEMs). Unfortunately, these data are restricted to relatively small areas, and may be expensive or time-consuming to collect. Global and near-global DEMs with 1 arcsec (∼30 m) ground sampling from spaceborne radar and optical sensors offer an alternative gridded, continuous surface at the cost of resolution and accuracy. Accuracy is typically defined with respect to external datasets, often, but not always, in the form of point or profile measurements from sources like differential Global Navigation Satellite System (GNSS), spaceborne lidar (e.g., ICESat), and other geodetic measurements. Vertical point or profile accuracy metrics can miss the pixel-to-pixel variability (sometimes called DEM noise) that is unrelated to true topographic signal, but rather sensor-, orbital-, and/or processing-related artifacts. This is most concerning in selecting a DEM for geomorphic analysis, as this variability can affect derivatives of elevation (e.g., slope and curvature) and impact flow routing. We use (near) global DEMs at 1 arcsec resolution (SRTM, ASTER, ALOS, TanDEM-X, and the recently released Copernicus) and develop new internal accuracy metrics to assess inter-pixel variability without reference data. Our study area is in the arid, steep Central Andes, and is nearly vegetation-free, creating ideal conditions for remote sensing of the bare-earth surface. We use a novel hillshade-filtering approach to detrend long-wavelength topographic signals and accentuate short-wavelength variability. Fourier transformations of the spatial signal to the frequency domain allows us to quantify: 1) artifacts in the un-projected 1 arcsec DEMs at wavelengths greater than the Nyquist (twice the nominal resolution, so > 2 arcsec); and 2) the relative variance of adjacent pixels in DEMs resampled to 30-m resolution (UTM projected). We translate results into their impact on hillslope and channel slope calculations, and we highlight the quality of the five DEMs. We find that the Copernicus DEM, which is based on a carefully edited commercial version of the TanDEM-X, provides the highest quality landscape representation, and should become the preferred DEM for topographic analysis in areas without sufficient coverage of higher-quality local DEMs. KW - DEM noise KW - Fourier analysis KW - TanDEM-X KW - ASTER GDEM KW - Copernicus DEM KW - WorldDEM KW - SRTM KW - ALOS World 3D Y1 - 2021 U6 - https://doi.org/10.3389/feart.2021.758606 SN - 2296-6463 SP - 1 EP - 24 PB - Frontiers Media CY - Lausanne, Schweiz ER - TY - JOUR A1 - Huss, Matthias A1 - Bookhagen, Bodo A1 - Huggel, C. A1 - Jacobsen, Dean A1 - Bradley, Raymond S. A1 - Clague, J. J. A1 - Vuille, Mathias A1 - Buytaert, Wouter A1 - Cayan, D. R. A1 - Greenwood, G. A1 - Mark, B. G. A1 - Milner, A. M. A1 - Weingartner, Rolf A1 - Winder, M. T1 - Toward mountains without permanent snow and ice JF - Earths future N2 - The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier-and moraine-dammed lakes will threaten downstream populations.Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice. Y1 - 2017 U6 - https://doi.org/10.1002/2016EF000514 SN - 2328-4277 VL - 5 SP - 418 EP - 435 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia T2 - active and passive microwave remote sensing for environmental monitoring II N2 - High Mountain Asia provides water for more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow - the vast majority of which is not monitored by sparse weather networks. We leverage passive microwave data from the SSMI series of satellites (SSMI, SSMI/S, 1987-2016), reprocessed to 3.125 km resolution, to examine trends in the volume and spatial distribution of snow-water equivalent (SWE) in the Indus Basin. We find that the majority of the Indus has seen an increase in snow-water storage. There exists a strong elevation-trend relationship, where high-elevation zones have more positive SWE trends. Negative trends are confined to the Himalayan foreland and deeply-incised valleys which run into the Upper Indus. This implies a temperature-dependent cutoff below which precipitation increases are not translated into increased SWE. Earlier snowmelt or a higher percentage of liquid precipitation could both explain this cutoff.(1) Earlier work 2 found a negative snow-water storage trend for the entire Indus catchment over the time period 1987-2009 (-4 x 10(-3) mm/yr). In this study based on an additional seven years of data, the average trend reverses to 1.4 x 10(-3). This implies that the decade since the mid-2000s was likely wetter, and positively impacted long-term SWE trends. This conclusion is supported by an analysis of snowmelt onset and end dates which found that while long-term trends are negative, more recent (since 2005) trends are positive (moving later in the year).(3) KW - Passive Microwave KW - Snow KW - Climate Change KW - High Mountain Asia Y1 - 2018 SN - 978-1-5106-2160-2 U6 - https://doi.org/10.1117/12.2323827 SN - 0277-786X SN - 1996-756X VL - 10788 PB - SPIE-INT Soc Optical Engineering CY - Bellingham ER - TY - JOUR A1 - Cannon, Forest A1 - Carvalho, Leila M. V. A1 - Jones, Charles A1 - Norris, Jesse A1 - Bookhagen, Bodo A1 - Kiladis, George N. T1 - Effects of topographic smoothing on the simulation of winter precipitation in High Mountain Asia JF - Journal of Geophysical Research: Atmospheres N2 - Numerous studies have projected future changes in High Mountain Asia water resources based on temperature and precipitation from global circulation models (GCMs) under future climate scenarios. Although the potential benefit of such studies is immense, coarse grid-scale GCMs are unable to resolve High Mountain Asia's complex topography and thus have a biased representation of regional weather and climate. This study investigates biases in the simulation of physical mechanisms that generate snowfall and contribute to snowpack in High Mountain Asia in coarse topography experiments using the Weather Research and Forecasting model. Regional snowpack is event driven, thus 33 extreme winter orographic precipitation events are simulated at fine atmospheric resolution with 6.67 km resolution topography and smoothed 1.85° × 1.25° GCM topography. As with many modified topography experiments performed in other regions, the distribution of precipitation is highly dependent on first-order orographic effects, which dominate regional meteorology. However, we demonstrate that topographic smoothing enhances circulation in simulated extratropical cyclones, with significant impacts on orographic precipitation. Despite precipitation reductions of 28% over the highest ranges, due to reduced ascent on windward slopes, total precipitation over the study domain increased by an average of 9% in smoothed topography experiments on account of intensified extratropical cyclone dynamics and cross-barrier moisture flux. These findings identify an important source of bias in coarse-resolution simulated precipitation in High Mountain Asia, with important implications for the application of GCMs toward projecting future hydroclimate in the region. Y1 - 2017 U6 - https://doi.org/10.1002/2016JD026038 SN - 2169-897X SN - 2169-8996 VL - 122 IS - 3 SP - 1456 EP - 1474 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Özcan, Orkan A1 - Bookhagen, Bodo A1 - Musaoglu, Nebiye T1 - Impact of the Ataturk Dam Lake on Agro-Meteorological Aspects of the Southeastern Anatolia Region, Turkey JF - Journal of the Indian Society of Remote Sensing N2 - In this study, the spatial and temporal impacts of the Ataturk Dam on agro-meteorological aspects of the Southeastern Anatolia region have been investigated. Change detection and environmental impacts due to water-reserve changes in Ataturk Dam Lake have been determined and evaluated using multi-temporal Landsat satellite imageries and meteorological datasets within a period of 1984-2011. These time series have been evaluated for three time periods. Dam construction period constitutes the first part of the study. Land cover/use changes especially on agricultural fields under the Ataturk Dam Lake and its vicinity have been identified between the periods of 1984-1992. The second period comprises the 10-year period after the completion of filling up the reservoir in 1992. At this period, Landsat and meteorological time-series analyses are examined to assess the impact of the Ataturk Dam Lake on selected irrigated agricultural areas. For the last 9-year period from 2002 to 2011, the relationships between seasonal water-reserve changes and irrigated plains under changing climatic factors primarily driving vegetation activity (monthly, seasonal, and annual fluctuations of rainfall rate, air temperature, humidity) on the watershed have been investigated using a 30-year meteorological time series. The results showed that approximately 368 km(2) of agricultural fields have been affected because of inundation due to the Ataturk Dam Lake. However, irrigated agricultural fields have been increased by 56.3% of the total area (1552 of 2756 km(2)) on Harran Plain within the period of 1984-2011. KW - Ataturk Dam Lake KW - Harran Plain KW - Landsat time-series KW - Tasseled Cap transformation KW - Disturbance index Y1 - 2018 U6 - https://doi.org/10.1007/s12524-017-0703-9 SN - 0255-660X SN - 0974-3006 VL - 46 IS - 3 SP - 471 EP - 481 PB - Springer CY - New York ER - TY - GEN A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Network-based flow accumulation for point clouds BT - Facet-Flow Networks (FFN) T2 - Remote Sensing for Agriculture, Ecosystems, and Hydrology XX N2 - Point clouds provide high-resolution topographic data which is often classified into bare-earth, vegetation, and building points and then filtered and aggregated to gridded Digital Elevation Models (DEMs) or Digital Terrain Models (DTMs). Based on these equally-spaced grids flow-accumulation algorithms are applied to describe the hydrologic and geomorphologic mass transport on the surface. In this contribution, we propose a stochastic point-cloud filtering that, together with a spatial bootstrap sampling, allows for a flow accumulation directly on point clouds using Facet-Flow Networks (FFN). Additionally, this provides a framework for the quantification of uncertainties in point-cloud derived metrics such as Specific Catchment Area (SCA) even though the flow accumulation itself is deterministic. KW - lidar KW - point clouds KW - stochastic filtering KW - flow accumulation KW - drainage networks KW - uncertainty quantification KW - TIN KW - DEM Y1 - 2018 SN - 978-1-5106-2150-3 U6 - https://doi.org/10.1117/12.2318424 SN - 0277-786X SN - 1996-756X VL - 10783 PB - SPIE-INT Society of Photo-Optical Instrumentation Engineers CY - Bellingham ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009) JF - Science Advances N2 - Snow meltwaters account for most of the yearly water budgets of many catchments in High Mountain Asia (HMA). We examine trends in snow water equivalent (SWE) using passive microwave data (1987 to 2009). We find an overall decrease in SWE in HMA, despite regions of increased SWE in the Pamir, Kunlun Shan, Eastern Himalaya, and Eastern Tien Shan. Although the average decline in annual SWE across HMA (contributing area, 2641 x 10(3) km(2)) is low (average, -0.3%), annual SWE losses conceal distinct seasonal and spatial heterogeneities across the study region. For example, the Tien Shan has seen both strong increases in winter SWE and sharp declines in spring and summer SWE. In the majority of catchments, the most negative SWE trends are found in mid-elevation zones, which often correspond to the regions of highest snow-water storage and are somewhat distinct from glaciated areas. Negative changes in SWE storage in these mid-elevation zones have strong implications for downstream water availability. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.1701550 SN - 2375-2548 VL - 4 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Wulf, Hendrik A1 - Bookhagen, Bodo A1 - Scherler, Dirk T1 - Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya JF - Hydrology and earth system sciences : HESS N2 - The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (a parts per thousand yen 99th SSC percentile) coincide frequently (57-80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent monsoonal rainstorms across the Himalaya, we expect an increase in peak SSC events, which will decrease the water quality and impact hydropower generation. Y1 - 2012 U6 - https://doi.org/10.5194/hess-16-2193-2012 SN - 1027-5606 VL - 16 IS - 7 SP - 2193 EP - 2217 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Malik, Nishant A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June-September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades. KW - Indian summer monsoon KW - Event synchronization KW - Complex networks KW - Rainfall patterns Y1 - 2012 U6 - https://doi.org/10.1007/s00382-011-1156-4 SN - 0930-7575 VL - 39 IS - 3-4 SP - 971 EP - 987 PB - Springer CY - New York ER - TY - JOUR A1 - Wulf, Hendrik A1 - Bookhagen, Bodo A1 - Scherler, Dirk T1 - Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya N2 - Precipitation in the form of rain and snowfall throughout the Himalaya controls river discharge and erosional processes and, thus, has a first-order control on the fluvial sediment flux. Here, we analyze daily precipitation data (1998-2007) of 80 weather stations from the northwestern Himalaya in order to decipher temporal and spatial moisture gradients. In addition, suspended sediment data allow assessment of the impact of precipitation on the fluvial sediment flux for a 10(3)-km(2) catchment (Baspa). We find that weather stations located at the mountain front receive similar to 80% of annual precipitation during summer (May-Oct), whereas stations in the orogenic interior, i.e., leeward of the orographic barrier, receive similar to 60% of annual precipitation during winter (Nov-Apr). In both regions 4-6 rainstorm days account for similar to 40% of the summer budgets, while rainstorm magnitude-frequency relations, derived from 40-year precipitation time-series, indicate a higher storm variability in the interior than in the frontal region. This high variability in maximum annual rainstorm days in the orogenic interior is reflected by a high variability in extreme suspended sediment events in the Baspa Valley, which strongly affect annual erosion yields. The two most prominent 5-day-long erosional events account for 50% of the total 5-year suspended sediment flux and coincide with synoptic-scale monsoonal rainstorms. This emphasizes the erosional impact of the Indian Summer Monsoon as the main driving force for erosion processes in the orogenic interior, despite more precipitation falling during the winter season. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/0169555X U6 - https://doi.org/10.1016/j.geomorph.2009.12.003 SN - 0169-555X ER - TY - JOUR A1 - Meese, Bernd A1 - Bookhagen, Bodo A1 - Olen, Stephanie M. A1 - Barthold, Frauke Katrin A1 - Sachse, Dirk T1 - The effect of Indian Summer Monsoon rainfall on surface water delta D values in the central Himalaya JF - Hydrological processes N2 - Stable isotope proxy records, such as speleothems, plant-wax biomarker records, and ice cores, are suitable archives for the reconstruction of regional palaeohydrologic conditions. But the interpretation of these records in the tropics, especially in the Indian Summer Monsoon (ISM) domain, is difficult due to differing moisture and water sources: precipitation from the ISM and Winter Westerlies, as well as snow- and glacial meltwater. In this study, we use interannual differences in ISM strength (2011-2012) to understand the stable isotopic composition of surface water in the Arun River catchment in eastern Nepal. We sampled main stem and tributary water (n = 204) for stable hydrogen and oxygen isotope analysis in the postmonsoon phase of two subsequent years with significantly distinct ISM intensities. In addition to the 2011/2012 sampling campaigns, we collected a 12-month time series of main stem waters (2012/2013, n = 105) in order to better quantify seasonal effects on the variability of surface water delta O-18/delta D. Furthermore, remotely sensed satellite data of rainfall, snow cover, glacial coverage, and evapotranspiration was evaluated. The comparison of datasets from both years revealed that surface waters of the main stem Arun and its tributaries were D-enriched by similar to 15 parts per thousand when ISM rainfall decreased by 20%. This strong response emphasizes the importance of the ISM for surface water run-off in the central Himalaya. However, further spatio-temporal analysis of remote sensing data in combination with stream water d-excess revealed that most high-altitude tributaries and the Tibetan part of the Arun receive high portions of glacial melt water and likely Winter Westerly Disturbances precipitation. We make the following two implications: First, palaeohydrologic archives found in high-altitude tributaries and on the southern Tibetan Plateau record a mixture of past precipitation delta D values and variable amounts of additional water sources. Second, surface water isotope ratios of lower elevated tributaries strongly reflect the isotopic composition of ISM rainfall implying a suitable region for the analysis of potential delta D value proxy records. KW - Himalaya KW - palaeoclimate records KW - snow melt KW - stream water KW - water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/hyp.13281 SN - 0885-6087 SN - 1099-1085 VL - 32 IS - 24 SP - 3662 EP - 3674 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Regmi, Shakil A1 - Bookhagen, Bodo T1 - The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya JF - Weather and climate extremes N2 - The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal. KW - Himalaya KW - Nepal KW - Indian summer monsoon KW - Precipitation KW - Extreme KW - precipitation Y1 - 2022 U6 - https://doi.org/10.1016/j.wace.2022.100470 SN - 2212-0947 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bergner, Andreas G. N. A1 - Trauth, Martin H. A1 - Bookhagen, Bodo T1 - Magnitude of precipitation : evaporation changes in the Naivasha Basin (Kenya) during the last 150 kyrs N2 - We modeled the two most extreme highstands of Lake Naivasha during the last 175 k.y. to estimate potential precipitation/ evaporation changes in this basin. In a first step, the bathymetry of the paleolakes at f135 and 9 k.y. BP was reconstructed from sediment cores and surface outcrops. Second, we modeled the paleohydrologic budget during the highstands using a simplified coupled energy mass-balance model. Our results show that the hydrologic and hence the climate conditions at f135 and 9 k.y. BP were similar, but significantly different from today. The main difference is a f15% higher value in precipitation compared to the present. An adaptation and migration of vegetation in the cause of climate changes would result in a f30% increase in precipitation. The most likely cause for such a wetter climate at f135 and 9 k.y. BP is a more intense intertropical convergence and increased precipitation in East Africa. Y1 - 2003 ER - TY - JOUR A1 - Bookhagen, Bodo A1 - Haselton, Kirk R. A1 - Trauth, Martin H. T1 - Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina Y1 - 2001 ER - TY - CHAP A1 - Zeilinger, Gerold A1 - Mutti, Maria A1 - Strecker, Manfred A1 - Rehak, Katrin A1 - Bookhagen, Bodo A1 - Schwab, Marco T1 - Integration of digital elevation models and satellite images to investigate geological processes. N2 - In order to better understand the geological boundary conditions for ongoing or past surface processes geologists face two important questions: 1) How can we gain additional knowledge about geological processes by analyzing digital elevation models (DEM) and satellite images and 2) Do these efforts present a viable approach for more efficient research. Here, we will present case studies at a variety of scales and levels of resolution to illustrate how we can substantially complement and enhance classical geological approaches with remote sensing techniques. Commonly, satellite and DEM based studies are being used in a first step of assessing areas of geologic interest. While in the past the analysis of satellite imagery (e.g. Landsat TM) and aerial photographs was carried out to characterize the regional geologic characteristics, particularly structure and lithology, geologists have increasingly ventured into a process-oriented approach. This entails assessing structures and geomorphic features with a concept that includes active tectonics or tectonic activity on time scales relevant to humans. In addition, these efforts involve analyzing and quantifying the processes acting at the surface by integrating different remote sensing and topographic data (e.g. SRTM-DEM, SSM/I, GPS, Landsat 7 ETM, Aster, Ikonos…). A combined structural and geomorphic study in the hyperarid Atacama desert demonstrates the use of satellite and digital elevation data for assessing geological structures formed by long-term (millions of years) feedback mechanisms between erosion and crustal bending (Zeilinger et al., 2005). The medium-term change of landscapes during hundred thousands to millions years in a more humid setting is shown in an example from southern Chile. Based on an analysis of rivers/watersheds combined with landscapes parameterization by using digital elevation models, the geomorphic evolution and change in drainage pattern in the coastal Cordillera can be quantified and put into the context of seismotectonic segmentation of a tectonically active region. This has far-reaching implications for earthquake rupture scenarios and hazard mitigation (K. Rehak, see poster on IMAF Workshop). Two examples illustrate short-term processes on decadal, centennial and millennial time scales: One study uses orogen scale precipitation gradients derived from remotely sensed passive microwave data (Bookhagen et al., 2005a). They demonstrate how debris flows were triggered as a response of slopes to abnormally strong rainfall in the interior parts of the Himalaya during intensified monsoons. The area of the orogen that receives high amounts of precipitation during intensified monsoons also constitutes numerous landslide deposits of up to 1km3 volume that were generated during intensified monsoon phase at about 27 and 9 ka (Bookhagen et al., 2005b). Another project in the Swiss Alps compared sets of aerial photographs recorded in different years. By calculating high resolution surfaces the mass transport in a landslide could be reconstructed (M. Schwab, Universität Bern). All these examples, although representing only a short and limited selection of projects using remote sense data in geology, have as a common approach the goal to quantify geological processes. With increasing data resolution and new sensors future projects will even enable us to recognize more patterns and / or structures indicative of geological processes in tectonically active areas. This is crucial for the analysis of natural hazards like earthquakes, tsunamis and landslides, as well as those hazards that are related to climatic variability. The integration of remotely sensed data at different spatial and temporal scales with field observations becomes increasingly important. Many of presently highly populated places and increasingly utilized regions are subject to significant environmental pressure and often constitute areas of concentrated economic value. Combined remote sensing and ground-truthing in these regions is particularly important as geologic, seismicity and hydrologic data may be limited here due to the recency of infrastructural development. Monitoring ongoing processes and evaluating the remotely sensed data in terms of recurrence of events will greatly enhance our ability to assess and mitigate natural hazards.
Dokument 1: Foliensatz | Dokument 2: Abstract
Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7063 ER - TY - GEN A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Hierro, Rodrigo T1 - Using Convective Available Potential Energy (CAPE) and Dew-Point Temperature to Characterize Rainfall-Extreme Events in the South-Central Andes T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The interactions between atmosphere and steep topography in the eastern south–central Andes result in complex relations with inhomogenous rainfall distributions. The atmospheric conditions leading to deep convection and extreme rainfall and their spatial patterns—both at the valley and mountain-belt scales—are not well understood. In this study, we aim to identify the dominant atmospheric conditions and their spatial variability by analyzing the convective available potential energy (CAPE) and dew-point temperature (Td). We explain the crucial effect of temperature on extreme rainfall generation along the steep climatic and topographic gradients in the NW Argentine Andes stretching from the low-elevation eastern foreland to the high-elevation central Andean Plateau in the west. Our analysis relies on version 2.0 of the ECMWF’s (European Centre for Medium-RangeWeather Forecasts) Re-Analysis (ERA-interim) data and TRMM (Tropical Rainfall Measuring Mission) data. We make the following key observations: First, we observe distinctive gradients along and across strike of the Andes in dew-point temperature and CAPE that both control rainfall distributions. Second, we identify a nonlinear correlation between rainfall and a combination of dew-point temperature and CAPE through a multivariable regression analysis. The correlation changes in space along the climatic and topographic gradients and helps to explain controlling factors for extreme-rainfall generation. Third, we observe more contribution (or higher importance) of Td in the tropical low-elevation foreland and intermediate-elevation areas as compared to the high-elevation central Andean Plateau for 90th percentile rainfall. In contrast, we observe a higher contribution of CAPE in the intermediate-elevation area between low and high elevation, especially in the transition zone between the tropical and subtropical areas for the 90th percentile rainfall. Fourth, we find that the parameters of the multivariable regression using CAPE and Td can explain rainfall with higher statistical significance for the 90th percentile compared to lower rainfall percentiles. Based on our results, the spatial pattern of rainfall-extreme events during the past ∼16 years can be described by a combination of dew-point temperature and CAPE in the south–central Andes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 771 KW - eastern south–central Andes KW - extreme rainfall KW - deep convection KW - convective available potential energy KW - dew-point temperature Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438865 SN - 1866-8372 IS - 771 ER - TY - JOUR A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Hierro, Rodrigo T1 - Using Convective Available Potential Energy (CAPE) and Dew-Point Temperature to Characterize Rainfall-Extreme Events in the South-Central Andes JF - Atmosphere N2 - The interactions between atmosphere and steep topography in the eastern south–central Andes result in complex relations with inhomogenous rainfall distributions. The atmospheric conditions leading to deep convection and extreme rainfall and their spatial patterns—both at the valley and mountain-belt scales—are not well understood. In this study, we aim to identify the dominant atmospheric conditions and their spatial variability by analyzing the convective available potential energy (CAPE) and dew-point temperature (Td). We explain the crucial effect of temperature on extreme rainfall generation along the steep climatic and topographic gradients in the NW Argentine Andes stretching from the low-elevation eastern foreland to the high-elevation central Andean Plateau in the west. Our analysis relies on version 2.0 of the ECMWF’s (European Centre for Medium-RangeWeather Forecasts) Re-Analysis (ERA-interim) data and TRMM (Tropical Rainfall Measuring Mission) data. We make the following key observations: First, we observe distinctive gradients along and across strike of the Andes in dew-point temperature and CAPE that both control rainfall distributions. Second, we identify a nonlinear correlation between rainfall and a combination of dew-point temperature and CAPE through a multivariable regression analysis. The correlation changes in space along the climatic and topographic gradients and helps to explain controlling factors for extreme-rainfall generation. Third, we observe more contribution (or higher importance) of Td in the tropical low-elevation foreland and intermediate-elevation areas as compared to the high-elevation central Andean Plateau for 90th percentile rainfall. In contrast, we observe a higher contribution of CAPE in the intermediate-elevation area between low and high elevation, especially in the transition zone between the tropical and subtropical areas for the 90th percentile rainfall. Fourth, we find that the parameters of the multivariable regression using CAPE and Td can explain rainfall with higher statistical significance for the 90th percentile compared to lower rainfall percentiles. Based on our results, the spatial pattern of rainfall-extreme events during the past ∼16 years can be described by a combination of dew-point temperature and CAPE in the south–central Andes. KW - eastern south–central Andes KW - extreme rainfall KW - deep convection KW - convective available potential energy KW - dew-point temperature Y1 - 2019 U6 - https://doi.org/10.3390/atmos10070379 SN - 2073-4433 VL - 10 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Deng, Zhiguo A1 - Calori, Andrea T1 - A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes JF - Remote Sensing N2 - Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes. KW - Global Navigation Satellite System (GNSS) KW - GNSS-integrated water vapour KW - convective available potential energy (CAPE) KW - extreme rainfall KW - TRMM Y1 - 2021 U6 - https://doi.org/10.3390/rs13183788 SN - 2072-4292 VL - 13 IS - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Alonso, Ricardo N. A1 - Bookhagen, Bodo A1 - Carrapa, Barbara A1 - Coutand, Isabelle A1 - Haschke, Michael A1 - Hilley, George E. A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward A1 - Strecker, Manfred A1 - Trauth, Martin H. A1 - Villanueva, Arturo T1 - Tectonics, climate and landscape evolution of the Southern Central Andes : the Argentine Puna Plateau and adjacent regions between 22 and 30°S Y1 - 2006 SN - 978-3-540- 24329-8 ER - TY - JOUR A1 - Strecker, Manfred A1 - Alonso, Ricardo N. A1 - Bookhagen, Bodo A1 - Carrapa, Barbara A1 - Coutand, Isabelle A1 - Hain, Mathis P. A1 - Hilley, George E. A1 - Mortimer, Estelle A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward T1 - Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes? N2 - Orogenic plateaus are extensive, high-elevation areas with low internal relief that have been attributed to deep-seated and/or climate-driven surface processes. In the latter case, models predict that lateral plateau growth results from increasing aridity along the margins as range uplift shields the orogen interior from precipitation. We analyze the spatiotemporal progression of basin isolation and filling at the eastern margin of the Puna Plateau of the Argentine Andes to determine if the topography predicted by such models is observed. We find that the timing of basin filling and reexcavation is variable, suggesting nonsystematic plateau growth. Instead, the Airy isostatically compensated component of topography constitutes the majority of the mean elevation gain between the foreland and the plateau. This indicates that deep-seated phenomena, such as changes in crustal thickness and/or lateral density, are required to produce high plateau elevations. In contrast, the frequency of the uncompensated topography within the plateau and in the adjacent foreland that is interrupted by ranges appears similar, although the amplitude of this topographic component increases east of the plateau. Combined with sedimentologic observations, we infer that the low internal relief of the plateau likely results from increased aridity and sediment storage within the plateau and along its eastern margin. Y1 - 2009 UR - http://geology.gsapubs.org/ U6 - https://doi.org/10.1130/G25545a.1 SN - 0091-7613 ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Arrowsmith, J. Ramón A1 - Bookhagen, Bodo A1 - McWilliams, Michael O. A1 - Sobel, Edward A1 - Strecker, Manfred T1 - Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India N2 - Metamorphic dome complexes occur within the internal structures of the northern Himalaya and southern Tibet. Their origin, deformation, and fault displacement patterns are poorly constrained. We report new field mapping, structural data, and cooling ages from the western flank of the Leo Pargil dome in the northwestern Himalaya in an attempt to characterize its post-middle Miocene structural development. The western flank of the dome is characterized by shallow, west-dipping pervasive foliation and WNW-ESE mineral lineation. Shear-sense indicators demonstrate that it is affected by east-west normal faulting that facilitated exhumation of high-grade metamorphic rocks in a contractional setting. Sustained top-to-northwest normal faulting during exhumation is observed in a progressive transition from ductile to brittle deformation. Garnet and kyanite indicate that the Leo Pargil dome was exhumed from the mid-crust. Ar- 40/Ar-39 mica and apatite fission track (AFT) ages constrain cooling and exhumation pathways front 350 to 60 degrees C and suggest that the dome cooled in three stages since the middle Miocene. Ar-40/Ar-39 white mica ages of 16-14 Ma suggest a first phase of rapid cooling and provide minimum estimates for the onset of dome exhumation. AFT ages between 10 and 8 Ma suggest that ductile fault displacement had ceased by then, and AFT track-length data from high-elevation samples indicate that the rate of cooling had decreased significantly. We interpret this to indicate decreased fault displacement along the Leo Pargil shear zone and possibly a transition to the Kaurik-Chango normal fault system between 10 and 6 Ma. AFT ages from lower elevations indicate accelerated cooling since the Pliocene that cannot be related to pure fault displacement, and therefore may reflect more pronounced regionally distributed and erosion-driven exhumation Y1 - 2006 U6 - https://doi.org/10.1130/B25872.1 ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Bookhagen, Bodo A1 - Arrowsmith, J. Ramón A1 - Sobel, Edward A1 - Strecker, Manfred T1 - Climatic control on rapid exhumation along the Southern Himalayan Front N2 - Along the Southern Himalayan Front (SHF), areas with concentrated precipitation coincide with rapid exhumation, as indicated by young mineral cooling ages. Twenty new, young ( < 1-5 Ma) apatite fission track (AFT) ages have been obtained from the Himalayan Crystalline Core along the Sutlej Valley, NW India. The AFT ages correlate with elevation, but show no spatial relationship to tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Monsoonal precipitation in this region exerts a strong influence on erosional surface processes. Fluvial erosional unloading along the SHF is focused on high mountainous areas, where the orographic barrier forces out > 80% of the annual precipitation. AFT cooling ages reveal a coincidence between rapid erosion and exhumation that is focused in a similar to 50-70-km-wide sector of the Himalaya, rather than encompassing the entire orogen. Assuming simplified constant exhumation rates, the rocks of two age vs. elevation transects were exhumed at similar to 1.4 +/- 0.2 and similar to 1.1 +/- 0.4 mm/a with an average cooling rate of similar to 40-50degreesC/Ma during Pliocene-Quarternary time. Following other recently published hypotheses regarding the relation between tectonics and climate in the Himalaya, we suggest that this concentrated loss of material was accommodated by motion along a back-stepping thrust to the south and a normal fault zone to the north as part of an extruding wedge. Climatically controlled erosional processes focus on this wedge and suggest that climatically controlled surface processes determine tectonic deformation in the internal part of the Himalaya. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0012-821X ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Arrowsmith, J. Ramón A1 - Bookhagen, Bodo A1 - McWilliams, Michael O. A1 - Sobel, Edward A1 - Strecker, Manfred T1 - From tectonically to erosionally controlled development of the Himalayan orogen N2 - Whether variations in the spatial distribution of erosion influence the location, style, and magnitude of deformation within the Himalayan orogen is a matter of debate. We report new Ar-40/Ar-39 white mica and apatite fission- track (AFT) ages that measure the vertical component of exhumation rates along an similar to 120-km-wide NE-SW transect spanning the greater Sutlej region of northwest India. The Ar-40/Ar-39 data indicate that first the High Himalayan Crystalline units cooled below their closing temperature during the early to middle Miocene. Subsequently, Lesser Himalayan Crystalline nappes cooled rapidly, indicating southward propagation of the orogen during late Miocene to Pliocene time. The AFT data, in contrast, imply synchronous exhumation of a NE-SW-oriented similar to 80 x 40 km region spanning both crystalline nappes during the Pliocene-Quaternary. The locus of pronounced exhumation defined by the AFT data correlates with a region of high precipitation, discharge, and sediment flux rates during the Holocene. This correlation suggests that although tectonic processes exerted the dominant control on the denudation pattern before and until the middle Miocene; erosion may have been the most important factor since the Pliocene Y1 - 2005 SN - 0091-7613 ER - TY - JOUR A1 - Günther, Oliver A1 - Schüle, Manja A1 - Zurell, Damaris A1 - Jeltsch, Florian A1 - Roeleke, Manuel A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Engbert, Ralf A1 - Elsner, Birgit A1 - Schlangen, David A1 - Agrofylax, Luisa A1 - Georgi, Doreen A1 - Weymar, Mathias A1 - Wagener, Thorsten A1 - Bookhagen, Bodo A1 - Eibl, Eva P. S. A1 - Korup, Oliver A1 - Oswald, Sascha Eric A1 - Thieken, Annegret A1 - van der Beek, Peter T1 - Portal Wissen = Exzellenz JF - Portal Wissen: Das Forschungsmagazin der Universität Potsdam N2 - Was nicht nur gut oder sehr gut ist, nennen wir gern exzellent. Aber was meint das eigentlich? Vom lateinischen „excellere“ kommend, beschreibt es Dinge, Personen oder Handlungen, die „hervor-“ oder „herausragen“ aus der Menge, sich „auszeichnen“ gegenüber anderen. Mehr geht nicht. Exzellenz ist das Mittel der Wahl, wenn es darum geht, der Erste oder Beste zu sein. Und das macht auch vor der Forschung nicht halt. Wer auf die Universität Potsdam schaut, findet zahlreiche ausgezeichnete Forschende, hervorragende Projekte und immer wieder auch aufsehenerregende Erkenntnisse, Veröffentlichungen und Ergebnisse. Aber ist die UP auch exzellent? Eine Frage, die 2023 ganz sicher andere Wellen schlägt als vielleicht vor 20 Jahren. Denn seit dem Start der Exzellenzinitiative 2005 gelten als – wörtlich – exzellent jene Hochschulen, denen es gelingt, in dem umfangreichsten Förderprogramm für Wissenschaft in Deutschland einen Zuschlag zu erhalten. Egal ob in Form von Graduiertenschulen, Forschungsclustern oder – seit Fortsetzung des Programms ab 2019 unter dem Titel „Exzellenzstrategie“ – ganzen Exzellenzuniversitäten: Wer im Kreis der Forschungsuniversitäten zu den Besten gehören will, braucht das Siegel der Exzellenz. In der gerade eingeläuteten neuen Wettbewerbsrunde der „Exzellenzstrategie des Bundes und der Länder“ bewirbt sich die Universität Potsdam mit drei Clusterskizzen um Förderung. Ein Antrag kommt aus der Ökologie- und Biodiversitätsforschung. Ziel ist es, ein komplexes Bild ökologischer Prozesse zu zeichnen – und dabei die Rolle von einzelnen Individuen ebenso zu betrachten wie das Zusammenwirken vieler Arten in einem Ökosystem, um die Funktion der Artenvielfalt genauer zu bestimmen. Eine zweite Skizze haben die Kognitionswissenschaften eingereicht. Hier soll das komplexe Nebeneinander von Sprache und Kognition, Entwicklung und Lernen sowie Motivation und Verhalten als dynamisches Miteinander erforscht werden – wobei auch mit den Erziehungswissenschaften kooperiert wird, um verknüpfte Lernund Bildungsprozesse stets mitzudenken. Der dritte Antrag aus den Geo- und Umweltwissenschaften nimmt extreme und besonders folgenschwere Naturgefahren und -prozesse wie Überschwemmungen und Dürren in den Blick. Die Forschenden untersuchen die Extremereignisse mit besonderem Fokus auf deren Wechselwirkung mit der Gesellschaft, um mit ihnen einhergehende Risiken und Schäden besser einschätzen sowie künftig rechtzeitig Maßnahmen einleiten zu können. „Alle drei Anträge zeichnen ein hervorragendes Bild unserer Leistungsfähigkeit“, betont der Präsident der Universität, Prof. Oliver Günther, Ph.D. „Die Skizzen dokumentieren eindrucksvoll unser Engagement, vorhandene Forschungsexzellenz sowie die Potenziale der Universität Potsdam insgesamt. Allein die Tatsache, dass sich drei schlagkräftige Konsortien in ganz unterschiedlichen Themenbereichen zusammengefunden haben, zeigt, dass wir auf unserem Weg in die Spitzengruppe der deutschen Universitäten einen guten Schritt vorangekommen sind.“ In diesem Heft schauen wir, was sich in und hinter diesen Anträgen verbirgt: Wir haben mit den Wissenschaftlerinnen und Wissenschaftlern gesprochen, die sie geschrieben haben, und sie gefragt, was sie sich vornehmen, sollten sie den Zuschlag erhalten und ein Cluster an die Universität holen. Wir haben aber auch auf die Forschung geschaut, die zu den Anträgen geführt hat und die schon länger das Profil der Universität prägt und ihr national wie international Anerkennung eingebracht hat. Wir stellen eine kleine Auswahl an Projekten, Methoden und Forschenden vor, um zu zeigen, warum in diesen Anträgen tatsächlich exzellente Forschung steckt! Übrigens: Auch „Exzellenz“ ist nicht das Ende der Fahnenstange. Immerhin lässt sich das Adjektiv exzellent sogar steigern. In diesem Sinne wünschen wir exzellentestes Vergnügen beim Lesen! T3 - Portal Wissen: Das Forschungsmagazin der Universität Potsdam [Deutsche Ausgabe] - 02/2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611440 SN - 2194-4245 IS - 02/2023 ER - TY - JOUR A1 - Günther, Oliver A1 - Schüle, Manja A1 - Zurell, Damaris A1 - Jeltsch, Florian A1 - Roeleke, Manuel A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Mikulla, Stefanie A1 - Engbert, Ralf A1 - Elsner, Birgit A1 - Schlangen, David A1 - Agrofylax, Luisa A1 - Georgi, Doreen A1 - Weymar, Mathias A1 - Wagener, Thorsten A1 - Bookhagen, Bodo A1 - Eibl, Eva P. S. A1 - Korup, Oliver A1 - Oswald, Sascha Eric A1 - Thieken, Annegret A1 - van der Beek, Peter T1 - Portal Wissen = Excellence JF - Portal Wissen: The research magazine of the University of Potsdam N2 - When something is not just good or very good, we often call it excellent. But what does that really mean? Coming from the Latin word “excellere,” it describes things, persons, or actions that are outstanding or superior and distinguish themselves from others. It cannot get any better. Excellence is the top choice for being the first or the best. Research is no exception. At the university, you will find numerous exceptional researchers, outstanding projects, and, time and again, sensational findings, publications, and results. But is the University of Potsdam also excellent? A question that will certainly create a different stir in 2023 than it did perhaps 20 years ago. Since the launch of the Excellence Initiative in 2005, universities that succeed in winning the most comprehensive funding program for research in Germany have been considered – literally – excellent. Whether in the form of graduate schools, research clusters, or – since the program was continued in 2019 under the title “Excellence Strategy” – entire universities of excellence: Anyone who wants to be among the best research universities needs the seal of excellence. The University of Potsdam is applying for funding with three cluster proposals in the recently launched new round of the “Excellence Strategy of the German Federal and State Governments.” One proposal comes from ecology and biodiversity research. The aim is to paint a comprehensive picture of ecological processes by examining the role of single individuals as well as the interactions among many species in an ecosystem to precisely determine the function of biodiversity. A second proposal has been submitted by the cognitive sciences. Here, the complex coexistence of language and cognition, development and learning, as well as motivation and behavior will be researched as a dynamic interrelation. The projects will include cooperation with the educational sciences to constantly consider linked learning and educational processes. The third proposal from the geo and environmental sciences concentrates on extreme and particularly devastating natural hazards and processes such as floods and droughts. The researchers examine these extreme events, focusing on their interaction with society, to be able to better assess the risks and damages they might involve and to initiate timely measures in the future. “All three proposals highlight the excellence of our performance,” emphasizes University President Prof. Oliver Günther, Ph.D. “The outlines impressively document our commitment, existing research excellence, and the potential of the University of Potsdam as a whole. The fact that three powerful consortia have come together in different subject areas shows that we have taken a good step forward on our way to becoming one of the top German universities.” In this issue, we are looking at what is in and behind these proposals: We talked to the researchers who wrote them. We asked them about their plans in case their proposals are successful and they bring a cluster of excellence to the university. But we also looked at the research that has led to the proposals, has long shaped the university’s profile, and earned it national and international recognition. We present a small selection of projects, methods, and researchers to illustrate why there really is excellent research in these proposals! By the way, “excellence” is also not the end of the flagpole. After all, the adjective “excellent” even has a comparative and a superlative. With this in mind, I wish you the most excellent pleasure reading this issue! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611456 SN - 2198-9974 IS - 02/2023 ER - TY - GEN A1 - Milewski, Robert A1 - Chabrillat, Sabine A1 - Bookhagen, Bodo T1 - Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014–2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet–dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR–SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite–gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan’s moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 988 KW - salt pan KW - playa KW - spectral analysis KW - crust KW - saline pan cycle KW - evaporites KW - time-series mapping Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475685 SN - 1866-8372 IS - 988 ER - TY - GEN A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Deng, Zhiguo A1 - Calori, Andrea T1 - A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1172 KW - Global Navigation Satellite System (GNSS) KW - GNSS-integrated water vapour KW - convective available potential energy (CAPE) KW - extreme rainfall KW - TRMM Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523256 SN - 1866-8372 IS - 1172 ER - TY - JOUR A1 - Boers, Niklas A1 - Goswami, Bedartha A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo A1 - Hoskins, Brian A1 - Kurths, Jürgen T1 - Complex networks reveal global pattern of extreme-rainfall teleconnections JF - Nature : the international weekly journal of science N2 - Climatic observables are often correlated across long spatial distances, and extreme events, such as heatwaves or floods, are typically assumed to be related to such teleconnections(1,2). Revealing atmospheric teleconnection patterns and understanding their underlying mechanisms is of great importance for weather forecasting in general and extreme-event prediction in particular(3,4), especially considering that the characteristics of extreme events have been suggested to change under ongoing anthropogenic climate change(5-8). Here we reveal the global coupling pattern of extreme-rainfall events by applying complex-network methodology to high-resolution satellite data and introducing a technique that corrects for multiple-comparison bias in functional networks. We find that the distance distribution of significant connections (P < 0.005) around the globe decays according to a power law up to distances of about 2,500 kilometres. For longer distances, the probability of significant connections is much higher than expected from the scaling of the power law. We attribute the shorter, power-law-distributed connections to regional weather systems. The longer, super-power-law-distributed connections form a global rainfall teleconnection pattern that is probably controlled by upper-level Rossby waves. We show that extreme-rainfall events in the monsoon systems of south-central Asia, east Asia and Africa are significantly synchronized. Moreover, we uncover concise links between south-central Asia and the European and North American extratropics, as well as the Southern Hemisphere extratropics. Analysis of the atmospheric conditions that lead to these teleconnections confirms Rossby waves as the physical mechanism underlying these global teleconnection patterns and emphasizes their crucial role in dynamical tropical-extratropical couplings. Our results provide insights into the function of Rossby waves in creating stable, global-scale dependencies of extreme-rainfall events, and into the potential predictability of associated natural hazards. Y1 - 2019 U6 - https://doi.org/10.1038/s41586-018-0872-x SN - 0028-0836 SN - 1476-4687 VL - 566 IS - 7744 SP - 373 EP - 377 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Luna, Lisa Victoria A1 - Bookhagen, Bodo A1 - Niedermann, Samuel A1 - Rugel, Georg A1 - Scharf, Andreas A1 - Merchel, Silke T1 - Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau JF - Earth & planetary science letters N2 - Glacial deposits on the high-altitude, arid southern Central Andean Plateau (CAP), the Puna in northwestern Argentina, document past changes in climate, but the associated geomorphic features have rarely been directly dated. This study provides direct age control of glacial moraine deposits from the central Puna (24 degrees S) at elevations of 3900-5000 m through surface exposure dating with cosmogenic nuclides. Our results show that the most extensive glaciations occurred before 95 ka and an additional major advance occurred between 46 and 39 ka. The latter period is synchronous with the highest lake levels in the nearby Pozuelos basin and the Minchin (Inca Huasi) wet phase on the Altiplano in the northern CAP. None of the dated moraines produced boulder ages corresponding to the Tauca wet phase (24-15 ka). Additionally, the volcanic lithologies of the deposits allow us to establish production ratios at low latitude and high elevation for five different nuclide and mineral systems: Be-10, Ne-21, and Al-26 from quartz (11 or 12 samples) and He-3 and Ne-21 from pyroxene (10 samples). We present production ratios for all combinations of the measured nuclides and cross-calibrated production rates for 21Ne in pyroxene and quartz for the high, (sub-)tropical Andes. The production rates are based on our Be-10-normalized production ratios and a weighted mean of reference 10Be production rates calibrated in the high, tropical Andes (4.02 +/- 0.12 at g(-1) yr(-1)). These are, Ne-21(qtz): 18.1 +/- 1.2 at g(-1) yr(-1) and Ne-21(px): 36.6 +/- 1.8 at g(-1) yr(-1) (En(88-94)) scaled to sea level and high latitude using the Lal/Stone scheme, with 1 sigma uncertainties. As He-3 and Al-26 have been directly calibrated in the tropical Andes, we recommend using those rates. Finally, we compare exposure ages calculated using all measured cosmogenic nuclides from each sample, including 11 feldspar samples measured for Cl-36, and a suite of previously published production rates. (C) 2018 Published by Elsevier B.V. KW - cosmogenic nuclides KW - production rate KW - cross-calibration KW - South American Monsoon KW - Quaternary climate change KW - moraine Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.07.034 SN - 0012-821X SN - 1385-013X VL - 500 SP - 242 EP - 253 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Thompson, Jessica A. A1 - Chen, Jie A1 - Yang, Huili A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Burbank, Douglas T1 - Coarse- versus fine-grain quartz OSL and cosmogenic Be-10 dating of deformed fluvial terraces on the northeast Pamir margin, northwest China JF - Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques N2 - Along the NE Pamir margin, flights of late Quaternary fluvial terraces span actively deforming fault-related folds. We present detailed results on two terraces dated using optically stimulated luminescence (OSL) and cosmogenic radionuclide Be-10 (CRN) techniques. Quartz OSL dating of two different grain sizes (4-11 mu m and 90-180 mu m) revealed the fine-grain quartz fraction may overestimate the terrace ages by up to a factor of ten. Two-mm, small-aliquot, coarse-grain quartz OSL ages, calculated using the minimum age model, yielded stratigraphically consistent ages within error and dated times of terrace deposition to similar to 9 and similar to 16 ka. We speculate that, in this arid environment, fine-grain samples can be transported and deposited in single, turbid, and (sometimes) night-time floods that prevent thorough bleaching and, thereby, can lead to relatively large residual OSL signals. In contrast, sand in the fluvial system is likely to have a much longer residence time during transport, thereby providing greater opportunities for thorough bleaching. CRN Be-10 depth profiles date the timing of terrace abandonment to similar to 8 and similar to 14 ka: ages that generally agree with the coarse-grain quartz OSL ages. Our new terrace age of similar to 13-14 ka is broadly consistent with other terraces in the region that indicate terrace deposition and subsequent abandonment occurred primarily during glacial-interglacial transitions, thereby suggesting a climatic control on the formation of these terraces on the margins of the Tarim Basin. Furthermore, tectonic shortening rates calculated from these deformed terraces range from similar to 1.2 to similar to 4.6 mm/a and, when combined with shortening rates from other structures in the region, illuminate the late Quaternary basinward migration of deformation to faults and folds along the Pamir-Tian Shan collisional interface. KW - Tectonic geomorphology KW - Deformation KW - Quaternary terraces KW - Pamir KW - Tian shan Y1 - 2018 U6 - https://doi.org/10.1016/j.quageo.2018.01.002 SN - 1871-1014 SN - 1878-0350 VL - 46 SP - 1 EP - 15 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Nennewitz, Markus A1 - Thiede, Rasmus C. A1 - Bookhagen, Bodo T1 - Fault activity, tectonic segmentation, and deformation pattern of the western Himalaya on Ma timescales inferred from landscape morphology JF - Lithosphere N2 - The location and magnitude of Himalayan tectonic activity has been debated for decades, and several aspects remain unknown. For instance, the spatial distribution of crustal shortening that ultimately sustains Himalayan topography and the activity of major fault zones remain unknown at Ma timescales. In this study, we address the spatial deformation pattern in the data-scarce western Himalaya. We calculated catchment averaged, normalized river-steepness indices of non-glaciated drainage basins with tributary catchment areas between 5 and 200 km(2) (n = 2138). We analyzed the spatial distribution of the relative change of river steepness both along and across strike to gain information about the regional distribution of differential uplift pattern and relate this to the activity of distinctive fault segments. For our study area, we observe a positive correlation of averaged k(sn) values with long-term exhumation rates derived from previously published thermochronologic datasets combined with thermal modeling as well as with millennial timescale denudation rates based on cosmogenic nuclide dating. Our results indicate three tectono-geomorphic segments with distinctive landscape morphology, structural architecture, and fault geometry along the western Himalaya: Garhwal-Sutlej, Chamba, and Kashmir Himalaya (from east to west). Moreover, our data recognize distinctive fault segments showing varying thrust activity along strike of the Main Frontal Thrust, the Main Boundary Thrust, and in the vicinity of the steep topographic transition between the Lesser and Greater Himalaya. In this region, we relate out-of-sequence deformation along major basement thrust ramps, such as the Munsiari Thrust with deformation along a mid-crustal ramp along the basal decollement. We suggest that during the Quaternary, all major fault zones in the Western Himalaya experienced out-of-sequence faulting and have accommodated some portion of crustal shortening. Y1 - 2018 U6 - https://doi.org/10.1130/L681.1 SN - 1941-8264 SN - 1947-4253 VL - 10 IS - 5 SP - 632 EP - 640 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Grujic, Djordje A1 - Govin, Gwladys A1 - Barrier, Laurie A1 - Bookhagen, Bodo A1 - Coutand, Isabelle A1 - Cowan, Beth A1 - Hren, Michael T. A1 - Najman, Yani T1 - Formation of a Rain Shadow BT - O and H Stable Isotope Records in Authigenic Clays From the Siwalik Group in Eastern Bhutan JF - Geochemistry, geophysics, geosystems N2 - We measure the oxygen and hydrogen stable isotope composition of authigenic clays from Himalayan foreland sediments (Siwalik Group), and from present day small stream waters in eastern Bhutan to explore the impact of uplift of the Shillong Plateau on rain shadow formation over the Himalayan foothills. Stable isotope data from authigenic clay minerals (<2 μm) suggest the presence of three paleoclimatic periods during deposition of the Siwalik Group, between ∼7 and ∼1 Ma. The mean δ18O value in paleometeoric waters, which were in equilibrium with clay minerals, is ∼2.5‰ lower than in modern meteoric and stream waters at the elevation of the foreland basin. We discuss the factors that could have changed the isotopic composition of water over time and we conclude that (a) the most likely and significant cause for the increase in meteoric water δ18O values over time is the “amount effect,” specifically, a decrease in mean annual precipitation. (b) The change in mean annual precipitation over the foreland basin and foothills of the Himalaya is the result of orographic effect caused by the Shillong Plateau's uplift. The critical elevation of the Shillong Plateau required to induce significant orographic precipitation was attained after ∼1.2 Ma. (c) By applying scale analysis, we estimate that the mean annual precipitation over the foreland basin of the eastern Bhutan Himalayas has decreased by a factor of 1.7–2.5 over the last 1–3 million years. KW - authigenic clay KW - stable isotope KW - orographic precipitation KW - Siwaliks KW - Himalaya KW - foreland basin Y1 - 2018 U6 - https://doi.org/10.1029/2017GC007254 SN - 1525-2027 VL - 19 IS - 9 SP - 3430 EP - 3447 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Brell, Maximilian A1 - Segl, Karl A1 - Guanter, Luis A1 - Bookhagen, Bodo T1 - 3D hyperspectral point cloud generation BT - Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction JF - ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing N2 - Remote Sensing technologies allow to map biophysical, biochemical, and earth surface parameters of the land surface. Of especial interest for various applications in environmental and urban sciences is the combination of spectral and 3D elevation information. However, those two data streams are provided separately by different instruments, namely airborne laser scanner (ALS) for elevation and a hyperspectral imager (HSI) for high spectral resolution data. The fusion of ALS and HSI data can thus lead to a single data entity consistently featuring rich structural and spectral information. In this study, we present the application of fusing the first pulse return information from ALS data at a sub-decimeter spatial resolution with the lower-spatial resolution hyperspectral information available from the HSI into a hyperspectral point cloud (HSPC). During the processing, a plausible hyperspectral spectrum is assigned to every first-return ALS point. We show that the complementary implementation of spectral and 3D information at the point-cloud scale improves object-based classification and information extraction schemes. This improvements have great potential for numerous land cover mapping and environmental applications. KW - Lidar KW - Multispectral point cloud KW - Laser return intensity KW - Unmixing KW - Sharpening KW - Imaging spectroscopy KW - In-flight KW - Pixel level KW - Sensor fusion KW - Data fusion KW - Preprocessing KW - Point cloud segmentation KW - Semantic labeling Y1 - 2019 U6 - https://doi.org/10.1016/j.isprsjprs.2019.01.022 SN - 0924-2716 SN - 1872-8235 VL - 149 SP - 200 EP - 214 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jobe, Jessica Ann Thompson A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Chen, Jie A1 - Burbank, Douglas W. T1 - Dating growth strata and basin fill by combining Al-26/Be-10 burial dating and magnetostratigraphy BT - Constraining active deformation in the Pamir-Tian Shan convergence zone, NW China JF - Lithosphere N2 - Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y. Y1 - 2018 U6 - https://doi.org/10.1130/L727.1 SN - 1941-8264 SN - 1947-4253 VL - 10 IS - 6 SP - 806 EP - 828 PB - American Institute of Physics CY - Boulder ER - TY - GEN A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∼10 pts m−2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1 m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4 m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4 m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 725 KW - Digital Elevation Model KW - River Incision Model KW - Accuracy Asseessment KW - Landscape Response KW - Error KW - Slope KW - Uncertainties KW - Extraction KW - Expression KW - Patterns Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430165 SN - 1866-8372 IS - 725 SP - 475 EP - 489 ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Cannon, Forest T1 - Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Studies of glaciers generally require precise glacier outlines. Where these are not available, extensive manual digitization in a geographic information system (GIS) must be performed, as current algorithms struggle to delineate glacier areas with debris cover or other irregular spectral profiles. Although several approaches have improved upon spectral band ratio delineation of glacier areas, none have entered wide use due to complexity or computational intensity. In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique velocity and topographic characteristics of glaciers and further leverages spectral and spatial relationship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as compared to a similar to 750 glacier control data set, and can reliably classify a given Landsat scene in 3-5 min. The algorithm does not completely solve the difficulties inherent in classifying glacier areas from remotely sensed imagery but does represent a significant improvement over purely spectral-based classification schemes, such as the band ratio of Landsat 7 bands three and five or the normalized difference snow index. The main caveats of the algorithm are (1) classification errors at an individual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3) dependence on fidelity of the input Landsat data. Y1 - 2015 U6 - https://doi.org/10.5194/tc-9-1747-2015 SN - 1994-0416 SN - 1994-0424 VL - 9 IS - 5 SP - 1747 EP - 1759 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Thompson, Jessica A. A1 - Burbank, Douglas W. A1 - Li, Tao A1 - Chen, Jie A1 - Bookhagen, Bodo T1 - Late Miocene northward propagation of the northeast Pamir thrust system, northwest China JF - Tectonics N2 - Piggyback basins on the margins of growing orogens commonly serve as sensitive recorders of the onset of thrust deformation and changes in source areas. The Bieertuokuoyi piggyback basin, located in the hanging wall of the Pamir Frontal Thrust, provides an unambiguous record of the outward growth of the northeast Pamir margin in northwest China from the Miocene through the Quaternary. To reconstruct the deformation along the margin, we synthesized structural mapping, stratigraphy, magnetostratigraphy, and cosmogenic burial dating of basin fill and growth strata. The Bieertuokuoyi basin records the initiation of the Pamir Frontal Thrust and the Takegai Thrust similar to 5-6Ma, as well as clast provenance and paleocurrent changes resulting from the Pliocene-to-Recent uplift and exhumation of the Pamir to the south. Our results show that coeval deformation was accommodated on the major structures on the northeast Pamir margin throughout the Miocene to Recent. Furthermore, our data support a change in the regional kinematics around the Miocene-Pliocene boundary (similar to 5-6Ma). Rapid exhumation of NE Pamir extensional domes, coupled with cessation of the Kashgar-Yecheng Transfer System on the eastern margin of the Pamir, accelerated the outward propagation of the northeastern Pamir margin and the southward propagation of the Kashi-Atushi fold-and-thrust belt in the southern Tian Shan. This coeval deformation signifies the coupling of the Pamir and Tarim blocks and the transfer of shortening north to the Pamir frontal faults and across the quasi-rigid Tarim Basin to the southern Tian Shan Kashi-Atushi fold-and-thrust system. KW - Pamir KW - thrust tectonics KW - piggyback basin KW - growth strata KW - landscape evolution KW - cosmogenic burial dating Y1 - 2015 U6 - https://doi.org/10.1002/2014TC003690 SN - 0278-7407 SN - 1944-9194 VL - 34 IS - 3 SP - 510 EP - 534 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Boers, Niklas A1 - Barbosa, Henrique M. J. A1 - Bookhagen, Bodo A1 - Marengo, Jose A. A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Propagation of Strong Rainfall Events from Southeastern South America to the Central Andes JF - Journal of climate N2 - Based on high-spatiotemporal-resolution data, the authors perform a climatological study of strong rainfall events propagating from southeastern South America to the eastern slopes of the central Andes during the monsoon season. These events account for up to 70% of total seasonal rainfall in these areas. They are of societal relevance because of associated natural hazards in the form of floods and landslides, and they form an intriguing climatic phenomenon, because they propagate against the direction of the low-level moisture flow from the tropics. The responsible synoptic mechanism is analyzed using suitable composites of the relevant atmospheric variables with high temporal resolution. The results suggest that the low-level inflow from the tropics, while important for maintaining sufficient moisture in the area of rainfall, does not initiate the formation of rainfall clusters. Instead, alternating low and high pressure anomalies in midlatitudes, which are associated with an eastward-moving Rossby wave train, in combination with the northwestern Argentinean low, create favorable pressure and wind conditions for frontogenesis and subsequent precipitation events propagating from southeastern South America toward the Bolivian Andes. KW - Cold air surges KW - Extreme events KW - Precipitation KW - Subtropical cyclones KW - Convective storms KW - Mesoscale systems Y1 - 2015 U6 - https://doi.org/10.1175/JCLI-D-15-0137.1 SN - 0894-8755 SN - 1520-0442 VL - 28 IS - 19 SP - 7641 EP - 7658 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Stolbova, Veronika A1 - Martin, P. A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka JF - Nonlinear processes in geophysics N2 - This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction. Y1 - 2014 U6 - https://doi.org/10.5194/npg-21-901-2014 SN - 1023-5809 VL - 21 IS - 4 SP - 901 EP - 917 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Harvey, Jonathan E. A1 - Burbank, Douglas W. A1 - Bookhagen, Bodo T1 - Along-strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal JF - Lithosphere N2 - Geodetic and seismologic studies support a tectonic model for the central Himalaya wherein similar to 2 cm/yr of Indo-Asian convergence is accommodated along the primary decollement under the range, the Main Himalayan thrust. A steeper midcrustal ramp in the Main Himalayan thrust is commonly invoked as driving rapid rock uplift along a range-parallel band in the Greater Himalaya. This tectonic model, developed primarily from studies in central Nepal, is commonly assumed to project along strike with little lateral variation in Main Himalayan thrust geometry or associated rock uplift patterns. Here, we synthesize multiple lines of evidence for a major discontinuity in the Main Himalayan thrust in western Nepal. Analysis of topography and seismicity indicates that west of similar to 82.5 degrees E, the single band of steep topography and seismicity along the Main Himalayan thrust ramp in central Nepal bifurcates around a high-elevation, low-relief landscape, resulting in a two-step topographic front along an similar to 150 km segment of the central Himalaya. Although multiple models could explain this bifurcation, the full suite of data appears to be most consistent with a northward bend to the Main Himalayan thrust ramp and activation of a young duplex horse to the south. This poorly documented segmentation of the Main Himalayan thrust has important implications for the seismogenic potential of the western Nepal seismic gap and for models of the ongoing evolution of the orogen. Y1 - 2015 U6 - https://doi.org/10.1130/L444.1 SN - 1941-8264 SN - 1947-4253 VL - 7 IS - 5 SP - 511 EP - 518 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Introducing PebbleCounts BT - a grain-sizing tool for photo surveys of dynamic gravel-bed rivers JF - Earth Surface Dynamics N2 - Grain-size distributions are a key geomorphic metric of gravel-bed rivers. Traditional measurement methods include manual counting or photo sieving, but these are achievable only at the 1–10 ㎡ scale. With the advent of drones and increasingly high-resolution cameras, we can now generate orthoimagery over hectares at millimeter to centimeter resolution. These scales, along with the complexity of high-mountain rivers, necessitate different approaches for photo sieving. As opposed to other image segmentation methods that use a watershed approach, our open-source algorithm, PebbleCounts, relies on k-means clustering in the spatial and spectral domain and rapid manual selection of well-delineated grains. This improves grain-size estimates for complex riverbed imagery, without post-processing. We also develop a fully automated method, PebbleCountsAuto, that relies on edge detection and filtering suspect grains, without the k-means clustering or manual selection steps. The algorithms are tested in controlled indoor conditions on three arrays of pebbles and then applied to 12 × 1 ㎡ orthomosaic clips of high-energy mountain rivers collected with a camera-on-mast setup (akin to a low-flying drone). A 20-pixel b-axis length lower truncation is necessary for attaining accurate grain-size distributions. For the k-means PebbleCounts approach, average percentile bias and precision are 0.03 and 0.09 ψ, respectively, for ∼1.16 mm pixel⁻¹ images, and 0.07 and 0.05 ψ for one 0.32 mm pixel⁻¹ image. The automatic approach has higher bias and precision of 0.13 and 0.15 ψ, respectively, for ∼1.16 mm pixel⁻¹ images, but similar values of −0.06 and 0.05 ψ for one 0.32 mm pixel⁻¹ image. For the automatic approach, only at best 70 % of the grains are correct identifications, and typically around 50 %. PebbleCounts operates most effectively at the 1 ㎡ patch scale, where it can be applied in ∼5–10 min on many patches to acquire accurate grain-size data over 10–100 ㎡ areas. These data can be used to validate PebbleCountsAuto, which may be applied at the scale of entire survey sites (102–104 ㎡ ). We synthesize results and recommend best practices for image collection, orthomosaic generation, and grain-size measurement using both algorithms. Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-859-2019 SN - 2196-6311 SN - 2196-632X VL - 2019 IS - 7 SP - 859 EP - 877 PB - Copernicus Publ CY - Göttingen ER - TY - JOUR A1 - Hartman, Brett D. A1 - Bookhagen, Bodo A1 - Chadwick, Oliver A. T1 - The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems JF - Restoration Ecology N2 - Restoring degraded lands in rural environments that are heavily managed to meet subsistence needs is a challenge due to high rates of disturbance and resource extraction. This study investigates the efficacy of erosion control structures (ECSs) as restoration tools in the context of a watershed rehabilitation and wet meadow (bofedal) restoration program in the Bolivian Andes. In an effort to enhance water security and increase grazing stability, Aymara indigenous communities built over 15,000 check dams, 9,100 terraces, 5,300 infiltration ditches, and 35 pasture improvement trials. Communities built ECSs at different rates, and we compared vegetation change in the highest restoration management intensity, lowest restoration management intensity, and nonproject control communities. We used line transects to measure changes in vegetation cover and standing water in gullies with check dams and without check dams, and related these ground measurements to a time series (1986-2009) of normalized difference vegetation index derived from Landsat TM5 images. Evidence suggests that check dams increase bofedal vegetation and standing water at a local scale, and lead to increased greenness at a basin scale when combined with other ECSs. Watershed rehabilitation enhances ecosystem services significant to local communities (grazing stability, water security), which creates important synergies when conducting land restoration in rural development settings. KW - Aymara KW - human-environment system KW - indigenous people KW - land restoration; NDVI KW - wet meadow Y1 - 2016 U6 - https://doi.org/10.1111/rec.12402 SN - 1061-2971 SN - 1526-100X VL - 24 SP - 761 EP - 772 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset JF - Earth Surface Dynamics N2 - Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∼10 pts m−2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1 m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4 m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4 m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions. KW - Digital Elevation Model KW - River Incision Model KW - Accuracy Asseessment KW - Landscape Response KW - Error KW - Slope KW - Uncertainties KW - Extraction KW - Expression KW - Patterns Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-475-2019 SN - 2196-6311 SN - 2196-632X VL - 7 SP - 475 EP - 489 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Hoffmann, Bernd A1 - Feakins, Sarah J. A1 - Bookhagen, Bodo A1 - Olen, Stephanie M. A1 - Adhikari, Danda P. A1 - Mainali, Janardan A1 - Sachse, Dirk T1 - Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal JF - Earth & planetary science letters KW - plant wax biomarker KW - leaf wax delta D KW - carbon cycle KW - remote sensing KW - erosion Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.07.008 SN - 0012-821X SN - 1385-013X VL - 452 SP - 104 EP - 114 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Jobe, Jessica Ann Thompson A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Chen, Jie A1 - Burbank, Douglas W. T1 - Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy BT - constraining active deformation in the Pamir–Tian Shan convergence zone, NW China T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1044 KW - thrust belts KW - Tarim Basin KW - cosmogenic AL-26 KW - production rates KW - foreland basin KW - erosion rates KW - deep crust KW - half-life KW - NE Pamir KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468067 SN - 1866-8372 IS - 1044 SP - 806 EP - 828 ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Beyond Vertical Point Accuracy BT - Assessing Inter-pixel Consistency in 30 m Global DEMs for the Arid Central Andes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Quantitative geomorphic research depends on accurate topographic data often collected via remote sensing. Lidar, and photogrammetric methods like structure-from-motion, provide the highest quality data for generating digital elevation models (DEMs). Unfortunately, these data are restricted to relatively small areas, and may be expensive or time-consuming to collect. Global and near-global DEMs with 1 arcsec (∼30 m) ground sampling from spaceborne radar and optical sensors offer an alternative gridded, continuous surface at the cost of resolution and accuracy. Accuracy is typically defined with respect to external datasets, often, but not always, in the form of point or profile measurements from sources like differential Global Navigation Satellite System (GNSS), spaceborne lidar (e.g., ICESat), and other geodetic measurements. Vertical point or profile accuracy metrics can miss the pixel-to-pixel variability (sometimes called DEM noise) that is unrelated to true topographic signal, but rather sensor-, orbital-, and/or processing-related artifacts. This is most concerning in selecting a DEM for geomorphic analysis, as this variability can affect derivatives of elevation (e.g., slope and curvature) and impact flow routing. We use (near) global DEMs at 1 arcsec resolution (SRTM, ASTER, ALOS, TanDEM-X, and the recently released Copernicus) and develop new internal accuracy metrics to assess inter-pixel variability without reference data. Our study area is in the arid, steep Central Andes, and is nearly vegetation-free, creating ideal conditions for remote sensing of the bare-earth surface. We use a novel hillshade-filtering approach to detrend long-wavelength topographic signals and accentuate short-wavelength variability. Fourier transformations of the spatial signal to the frequency domain allows us to quantify: 1) artifacts in the un-projected 1 arcsec DEMs at wavelengths greater than the Nyquist (twice the nominal resolution, so > 2 arcsec); and 2) the relative variance of adjacent pixels in DEMs resampled to 30-m resolution (UTM projected). We translate results into their impact on hillslope and channel slope calculations, and we highlight the quality of the five DEMs. We find that the Copernicus DEM, which is based on a carefully edited commercial version of the TanDEM-X, provides the highest quality landscape representation, and should become the preferred DEM for topographic analysis in areas without sufficient coverage of higher-quality local DEMs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1242 KW - DEM noise KW - Fourier analysis KW - TanDEM-X KW - ASTER GDEM KW - Copernicus DEM KW - WorldDEM KW - SRTM KW - ALOS World 3D Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549805 SN - 1866-8372 SP - 1 EP - 24 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Erbello Doelesso, Asfaw A1 - Melnick, Daniel A1 - Zeilinger, Gerold A1 - Bookhagen, Bodo A1 - Pingel, Heiko A1 - Strecker, Manfred T1 - Geomorphic expression of a tectonically active rift-transfer zone in southern Ethiopia JF - Geomorphology : an international journal on pure and applied geomorphology N2 - The Gofa Province and the Chew Bahir Basin of southern Ethiopia constitute tectonically active regions, where the Southern Main Ethiopian Rift converges with the Northern Kenya Rift through a wide zone of extensional deformation with several north to northeast-trending, left-stepping en-e & PRIME;chelon basins. This sector of the Southern Main Ethiopian Rift is characterized by a semi-arid climate and a largely uniform lithology, and thus provides ideal conditions for studying the different parameters that define the tectonic and geomorphic features of this complex kinematic transfer zone. In this study, the degree of tectonic activity, spatiotemporal variations in extension, and the nature of kinematic linkage between different fault systems of the transfer zone are constrained by detailed quantitative geomorphic analysis of river catchments and focused field work. We analyzed fluvial and landscape morphometric characteristics in combination with structural, seismicity, and climatic data to better evaluate the tectono-geomorphic history of this transfer zone. Our data reveal significant north-south variations in the degree of extension from the Sawula Basin in the north (mature) to the Chew Bahir Basin in the south (juvenile). First, normalized channel-steepness indices and the spatial arrangement of knickpoints in footwall-draining streams suggest a gradual, southward shift in extensional deformation and recent tectonic activity. Second, based on 1-k(m) radius local relief and mean-hillslope maximum values that are consistent with ksn anomalies, we confirm strain localization within zones of fault interaction. Third, morphometric indices such as hypsometry, basin asymmetry factor, and valley floor width to valley height ratio also indicate a north to south gradient in tectonic activity, highlighting the importance of such a wide transfer zone with diffuse extension linking different rift segments during the break-up of continental crust. KW - rift transfer zone KW - Ethiopia rift KW - renya Rift KW - morphometric indices KW - knickpoints Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108162 SN - 0169-555X SN - 1872-695X VL - 403 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Voss, Katalyn A. A1 - Bookhagen, Bodo A1 - Sachse, Dirk A1 - Chadwick, Oliver A. T1 - Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal JF - Journal of hydrology N2 - The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater. KW - stable isotopes KW - Himalaya KW - glacier KW - snow KW - precipitation KW - seasonality Y1 - 2020 U6 - https://doi.org/10.1016/j.jhydrol.2020.124802 SN - 0022-1694 SN - 1879-2707 VL - 586 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Castino, Fabiana A1 - Bookhagen, Bodo A1 - De la Torre, Alejandro T1 - Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - During the South-American Monsoon season, deep convective systems occur at the eastern flank of the Central Andes leading to heavy rainfall and flooding. We investigate the large- and meso-scale atmospheric dynamics associated with extreme discharge events (> 99.9th percentile) observed in two major river catchments meridionally stretching from humid to semi-arid conditions in the southern Central Andes. Based on daily gauge time series and ERA-Interim reanalysis, we made the following three key observations: (1) for the period 1940-2016 daily discharge exhibits more pronounced variability in the southern, semi-arid than in the northern, humid catchments. This is due to a smaller ratio of discharge magnitudes between intermediate (0.2 year return period) and rare events (20 year return period) in the semi-arid compared to the humid areas; (2) The climatological composites of the 40 largest discharge events showed characteristic atmospheric features of cold surges based on 5-day time-lagged sequences of geopotential height at different levels in the troposphere; (3) A subjective classification revealed that 80% of the 40 largest discharge events are mainly associated with the north-northeastward migration of frontal systems and 2/3 of these are cold fronts, i.e. cold surges. This work highlights the importance of cold surges and their related atmospheric processes for the generation of heavy rainfall events and floods in the southern Central Andes. KW - South American monsoon system KW - cold surges KW - orographic barrier KW - mesoscale convective systems KW - extreme discharge KW - daily-discharge time KW - series ERA-interim Y1 - 2019 U6 - https://doi.org/10.1007/s00382-020-05458-1 SN - 0930-7575 SN - 1432-0894 VL - 55 IS - 11-12 SP - 3485 EP - 3505 PB - Springer CY - Berlin ; Heidelberg [u.a.] ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Introducing PebbleCounts BT - a grain-sizing tool for photo surveys of dynamic gravel-bed rivers T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Grain-size distributions are a key geomorphic metric of gravel-bed rivers. Traditional measurement methods include manual counting or photo sieving, but these are achievable only at the 1–10 ㎡ scale. With the advent of drones and increasingly high-resolution cameras, we can now generate orthoimagery over hectares at millimeter to centimeter resolution. These scales, along with the complexity of high-mountain rivers, necessitate different approaches for photo sieving. As opposed to other image segmentation methods that use a watershed approach, our open-source algorithm, PebbleCounts, relies on k-means clustering in the spatial and spectral domain and rapid manual selection of well-delineated grains. This improves grain-size estimates for complex riverbed imagery, without post-processing. We also develop a fully automated method, PebbleCountsAuto, that relies on edge detection and filtering suspect grains, without the k-means clustering or manual selection steps. The algorithms are tested in controlled indoor conditions on three arrays of pebbles and then applied to 12 × 1 ㎡ orthomosaic clips of high-energy mountain rivers collected with a camera-on-mast setup (akin to a low-flying drone). A 20-pixel b-axis length lower truncation is necessary for attaining accurate grain-size distributions. For the k-means PebbleCounts approach, average percentile bias and precision are 0.03 and 0.09 ψ, respectively, for ∼1.16 mm pixel⁻¹ images, and 0.07 and 0.05 ψ for one 0.32 mm pixel⁻¹ image. The automatic approach has higher bias and precision of 0.13 and 0.15 ψ, respectively, for ∼1.16 mm pixel⁻¹ images, but similar values of −0.06 and 0.05 ψ for one 0.32 mm pixel⁻¹ image. For the automatic approach, only at best 70 % of the grains are correct identifications, and typically around 50 %. PebbleCounts operates most effectively at the 1 ㎡ patch scale, where it can be applied in ∼5–10 min on many patches to acquire accurate grain-size data over 10–100 ㎡ areas. These data can be used to validate PebbleCountsAuto, which may be applied at the scale of entire survey sites (102–104 ㎡ ). We synthesize results and recommend best practices for image collection, orthomosaic generation, and grain-size measurement using both algorithms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 783 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439468 SN - 1866-8372 IS - 783 ER - TY - GEN A1 - Brieger, Frederic A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Bookhagen, Bodo A1 - Zakharov, Evgenii S. A1 - Kruse, Stefan T1 - Advances in the derivation of Northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra–taiga ecotone should be adapted to the forest structure and have a radius of >15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1337 KW - UAV KW - photogrammetry KW - remote sensing KW - structure from motion KW - tundra–taiga ecotone KW - point cloud KW - forest structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473318 SN - 1866-8372 IS - 1337 ER - TY - GEN A1 - Tost, Jordi A1 - Ehmel, Fabian A1 - Heidmann, Frank A1 - Olen, Stephanie M. A1 - Bookhagen, Bodo T1 - Hazards and accessibility BT - combining and visualizing threat and open infrastructure data for disaster management T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The assessment of natural hazards and risk has traditionally been built upon the estimation of threat maps, which are used to depict potential danger posed by a particular hazard throughout a given area. But when a hazard event strikes, infrastructure is a significant factor that can determine if the situation becomes a disaster. The vulnerability of the population in a region does not only depend on the area’s local threat, but also on the geographical accessibility of the area. This makes threat maps by themselves insufficient for supporting real-time decision-making, especially for those tasks that involve the use of the road network, such as management of relief operations, aid distribution, or planning of evacuation routes, among others. To overcome this problem, this paper proposes a multidisciplinary approach divided in two parts. First, data fusion of satellite-based threat data and open infrastructure data from OpenStreetMap, introducing a threat-based routing service. Second, the visualization of this data through cartographic generalization and schematization. This emphasizes critical areas along roads in a simple way and allows users to visually evaluate the impact natural hazards may have on infrastructure. We develop and illustrate this methodology with a case study of landslide threat for an area in Colombia. KW - geovisualization KW - data fusion KW - generalization KW - schematic maps KW - natural hazards KW - disaster management Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427853 SN - 1866-8372 IS - 710 ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016 JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - High Mountain Asia (HMA) - encompassing the Tibetan Plateau and surrounding mountain ranges - is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications - such as agriculture, drinking-water generation, and hydropower - rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season - defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade 1 over the 29-year study period (5-25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002-2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers - such as the Karakoram and Kunlun Shan - see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous. Y1 - 2017 U6 - https://doi.org/10.5194/tc-11-2329-2017 SN - 1994-0416 SN - 1994-0424 VL - 11 SP - 2329 EP - 2343 ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau JF - Earth surface dynamics N2 - In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12–30 m), and ALOS World 3D (5–30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12–30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m=n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2–8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis. Y1 - 2017 U6 - https://doi.org/10.5194/esurf-5-211-2017 SN - 2196-632X SN - 2196-6311 VL - 5 IS - 2 SP - 211 EP - 237 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the south-central Andes JF - Earth Surface Dynamics N2 - In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12–30m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∼ 1∕10 pixel (∼ 3m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∼ 3m in the best case) in two  > 100km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5m (up to  > 10m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5myr−1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16±0.15×106m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography. KW - Digital Elevation Models KW - Glacier Mass Balances KW - Structure-from-motion KW - Accuracy Assessment KW - NW Argentina KW - Nevado Coropuna KW - Sediment Flux KW - Gravel-bed KW - River Y1 - 2018 U6 - https://doi.org/10.5194/esurf-6-971-2018 SN - 2196-6311 SN - 2196-632X VL - 6 SP - 971 EP - 987 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Alonzo, Michael A1 - Bookhagen, Bodo A1 - McFadden, Joseph P. A1 - Sun, Alex A1 - Roberts, Dar A. T1 - Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry JF - Remote sensing of environment : an interdisciplinary journal N2 - In urban areas, leaf area index (LAI) is a key ecosystem structural attribute with implications for energy and water balance, gas exchange, and anthropogenic energy use. In this study, we estimated LAI spatially using airborne lidar in downtown Santa Barbara, California, USA. We implemented two different modeling approaches. First, we directly estimated effective LAI (LAIe) using scan angle- and clump-corrected lidar laser penetration metrics (LPM). Second, we adapted existing allometric equations to estimate crown structural metrics including tree height and crown base height using lidar. The latter approach allowed for LAI estimates at the individual tree-crown scale. The LPM method, at both high and decimated point densities, resulted in good linear agreement with estimates from ground-based hemispherical photography (r(2) = 0.82, y = 0.99x) using a model that assumed a spherical leaf angle distribution. Within individual tree crown segments, the lidar estimates of crown structure closely paralleled field measurements (e.g., r(2) = 0.87 for crown length). LAI estimates based on the lidar crown measurements corresponded well with estimates from field measurements (r(2) = 0.84, y = 0.97x + 0.10). Consistency of the LPM and allometric lidar methods was also strong at 71 validation plots (r(2) = 0.88) and at 450 additional sample locations across the entire study area (r(2) = 0.72). This level of correspondence exceeded that of the canopy hemispherical photography and allometric, ground-based estimates (r(2) = 0.53). The first-order alignment of these two disparate methods may indicate that the error bounds for mapping LAI in cities are small enough to pursue large scale, spatially explicit estimation. (C) 2015 Elsevier Inc All rights reserved. KW - Airborne lidar KW - Leaf area index KW - Urban ecosystem analysis KW - Hemispherical photography KW - Allometry KW - Vegetation structure Y1 - 2015 U6 - https://doi.org/10.1016/j.rse.2015.02.025 SN - 0034-4257 SN - 1879-0704 VL - 162 SP - 141 EP - 153 PB - Elsevier CY - New York ER - TY - JOUR A1 - Olen, Stephanie M. A1 - Bookhagen, Bodo T1 - Mapping Damage-Affected Areas after Natural Hazard Events Using Sentinel-1 Coherence Time Series JF - remote sensing N2 - The emergence of the Sentinel-1A and 1B satellites now offers freely available and widely accessible Synthetic Aperture Radar (SAR) data. Near-global coverage and rapid repeat time (6–12 days) gives Sentinel-1 data the potential to be widely used for monitoring the Earth’s surface. Subtle land-cover and land surface changes can affect the phase and amplitude of the C-band SAR signal, and thus the coherence between two images collected before and after such changes. Analysis of SAR coherence therefore serves as a rapidly deployable and powerful tool to track both seasonal changes and rapid surface disturbances following natural disasters. An advantage of using Sentinel-1 C-band radar data is the ability to easily construct time series of coherence for a region of interest at low cost. In this paper, we propose a new method for Potentially Affected Area (PAA) detection following a natural hazard event. Based on the coherence time series, the proposed method (1) determines the natural variability of coherence within each pixel in the region of interest, accounting for factors such as seasonality and the inherent noise of variable surfaces; and (2) compares pixel-by-pixel syn-event coherence to temporal coherence distributions to determine where statistically significant coherence loss has occurred. The user can determine to what degree the syn-event coherence value (e.g., 1st, 5th percentile of pre-event distribution) constitutes a PAA, and integrate pertinent regional data, such as population density, to rank and prioritise PAAs. We apply the method to two case studies, Sarpol-e, Iran following the 2017 Iran-Iraq earthquake, and a landslide-prone region of NW Argentina, to demonstrate how rapid identification and interpretation of potentially affected areas can be performed shortly following a natural hazard event. KW - Sentinel-1 KW - natural hazards KW - rapid damage mapping KW - coherence KW - potentially affected areas (PAA) Y1 - 2018 U6 - https://doi.org/10.3390/rs10081272 SN - 2072-4292 VL - 10 IS - 8 SP - 1 EP - 19 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER - TY - JOUR A1 - Boers, Niklas A1 - Bookhagen, Bodo A1 - Marengo, Jose A1 - Marwan, Norbert A1 - von Storch, Jin-Song A1 - Kurths, Jürgen T1 - Extreme Rainfall of the South American Monsoon System: A Dataset Comparison Using Complex Networks JF - Journal of climate N2 - In this study, the authors compare six different rainfall datasets for South America with a focus on their representation of extreme rainfall during the monsoon season (December February): the gauge-calibrated TRMM 3B42 V7 satellite product; the near-real-time TRMM 3B42 V7 RT, the GPCP 1 degrees daily (1DD) V1.2 satellite gauge combination product, the Interim ECMWF Re-Analysis (ERA-Interim) product; output of a high-spatial-resolution run of the ECHAM6 global circulation model; and output of the regional climate model Eta. For the latter three, this study can be understood as a model evaluation. In addition to statistical values of local rainfall distributions, the authors focus on the spatial characteristics of extreme rainfall covariability. Since traditional approaches based on principal component analysis are not applicable in the context of extreme events, they apply and further develop methods based on complex network theory. This way, the authors uncover substantial differences in extreme rainfall patterns between the different datasets: (i) The three model-derived datasets yield very different results than the satellite gauge combinations regarding the main climatological propagation pathways of extreme events as well as the main convergence zones of the monsoon system. (ii) Large discrepancies are found for the development of mesoscale convective systems in southeastern South America. (iii) Both TRMM datasets and ECHAM6 indicate a linkage of extreme rainfall events between the central Amazon basin and the eastern slopes of the central Andes, but this pattern is not reproduced by the remaining datasets. The authors' study suggests that none of the three model-derived datasets adequately captures extreme rainfall patterns in South America. Y1 - 2015 U6 - https://doi.org/10.1175/JCLI-D-14-00340.1 SN - 0894-8755 SN - 1520-0442 VL - 28 IS - 3 SP - 1031 EP - 1056 PB - American Meteorological Soc. CY - Boston ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the south-central Andes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12–30m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∼ 1∕10 pixel (∼ 3m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∼ 3m in the best case) in two  > 100km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5m (up to  > 10m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5myr−1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16±0.15×106m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 480 KW - Digital Elevation Models KW - Glacier Mass Balances KW - Structure-from-motion KW - Accuracy Assessment KW - NW Argentina KW - Nevado Coropuna KW - Sediment Flux KW - Gravel-bed KW - River Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-420487 IS - 480 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016 N2 - High Mountain Asia (HMA) - encompassing the Tibetan Plateau and surrounding mountain ranges - is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications - such as agriculture, drinking-water generation, and hydropower - rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season - defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade 1 over the 29-year study period (5-25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002-2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers - such as the Karakoram and Kunlun Shan - see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 397 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403911 ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau JF - Earth surface dynamics N2 - In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12-30 m), and ALOS World 3D (5-30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12-30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m = n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2-8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e. g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis. Y1 - 2017 U6 - https://doi.org/10.5194/esurf-5-211-2017 SN - 2196-6311 SN - 2196-632X VL - 5 SP - 211 EP - 237 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Milewski, Robert A1 - Chabrillat, Sabine A1 - Bookhagen, Bodo T1 - Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data JF - Remote Sensing N2 - Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014–2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet–dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR–SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite–gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan’s moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization. KW - salt pan KW - playa KW - spectral analysis KW - crust KW - saline pan cycle KW - evaporites KW - time-series mapping Y1 - 2019 U6 - https://doi.org/10.3390/rs12030474 SN - 2072-4292 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Brell, Maximilian A1 - Segl, Karl A1 - Guanter, Luis A1 - Bookhagen, Bodo T1 - Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration JF - IEEE transactions on geoscience and remote sensing N2 - The fusion of hyperspectral imaging (HSI) sensor and airborne lidar scanner (ALS) data provides promising potential for applications in environmental sciences. Standard fusion approaches use reflectance information from the HSI and distance measurements from the ALS to increase data dimen-sionality and geometric accuracy. However, the potential for data fusion based on the respective intensity information of the complementary active and passive sensor systems is high and not yet fully exploited. Here, an approach for the rigorous illumination correction of HSI data, based on the radiometric cross-calibrated return intensity information of ALS data, is presented. The cross calibration utilizes a ray tracing-based fusion of both sensor measurements by intersecting their particular beam shapes. The developed method is capable of compensating for the drawbacks of passive HSI systems, such as cast and cloud shadowing effects, illumination changes over time, across track illumination, and partly anisotropy effects. During processing, spatial and temporal differences in illumination patterns are detected and corrected over the entire HSI wavelength domain. The improvement in the classification accuracy of urban and vegetation surfaces demonstrates the benefit and potential of the proposed HSI illumination correction. The presented approach is the first step toward the rigorous in-flight fusion of passive and active system characteristics, enabling new capabilities for a variety of applications. KW - Airborne laser scanning (ALS) KW - deshadowing KW - imaging spectroscopy KW - in-flight KW - mosaicking KW - pixel-level fusion KW - preprocessing KW - radiometric alignment KW - ray tracing KW - sensor alignment KW - sensor fusion Y1 - 2017 U6 - https://doi.org/10.1109/TGRS.2017.2654516 SN - 0196-2892 SN - 1558-0644 VL - 55 SP - 2799 EP - 2810 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Montero-Lopez, Carolina A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Hongn, Fernando D. A1 - Guzman, Silvina A1 - Bookhagen, Bodo A1 - Sudo, Masafumi T1 - Local high relief at the southern margin of the Andean plateau by 9 Ma: evidence from ignimbritic valley fills and river incision JF - Terra nova N2 - A valley-filling ignimbrite re-exposed through subsequent river incision at the southern margin of the Andean (Puna) plateau preserves pristine geological evidence of pre-late Miocene palaeotopography in the north western Argentine Andes. Our new Ar-40/(39) Ar dating of the Las Papas Ignimbrites yields a plateau age of 9.24 +/- 0.03 Ma, indicating valley-relief and orographic-barrier conditions comparable to the present-day. A later infill of Plio-Pleistocene coarse conglomerates has been linked to wetter conditions, but resulted in no additional net incision of the Las Papas valley, considering that the base of the ignimbrite remains unexposed in the valley bottom. Our observations indicate that at least 550 m of local plateau margin relief (and likely > 2 km) existed by 9 Ma at the southern Puna margin, which likely aided the efficiency of the orographic barrier to rainfall along the eastern and south eastern flanks of the Puna and causes aridity in the plateau interior. Y1 - 2014 U6 - https://doi.org/10.1111/ter.12120 SN - 0954-4879 SN - 1365-3121 VL - 26 IS - 6 SP - 454 EP - 460 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Ehlers, Todd A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Erosional variability along the northwest Himalaya N2 - Erosional exhumation and topography in mountain belts are temporally and spatially variable over million year timescales because of changes in both the location of deformation and climate. We investigate spatiotemporal variations in exhumation across a 150 x 250 km compartment of the NW Himalaya, India. Twenty-four new and 241 previously published apatite and zircon fission track and white mica Ar-40/Ar-39 ages are integrated with a 1-D numerical model to quantify rates and timing of exhumation alongstrike of several major structures in the Lesser, High, and Tethyan Himalaya. Analysis of thermochronometer data suggests major temporal variations in exhumation occurred in the early middle Miocene and at the Plio-Pleistocene transition. (1) Most notably, exhumation rates for the northern High Himalayan compartments were high (2-3 mm a(-1)) between similar to 23-19 and similar to 3-0 Ma and low (0.5-0.7 mm a(-1)) in between similar to 19-3 Ma. (2) Along the southern High Himalayan slopes, however, high exhumation rates of 1-2 mm a(-1) existed since 11 Ma. (3) Our thermochronology data sets are poorly correlated with present-day rainfall, local relief, and specific stream power which may likely result from (1) a lack of sensitivity of changes in crustal cooling to spatial variations in erosion at high exhumation rates (>similar to 1 mm a(-1)), (2) spatiotemporal variation in erosion not mimicking the present-day topographic or climatic conditions, or (3) the thermochronometer samples in this region having cooled under topography that only weakly resembled the modern-day topography. Y1 - 2009 UR - http://www.agu.org/journals/jf/ U6 - https://doi.org/10.1029/2008jf001010 SN - 0148-0227 ER - TY - JOUR A1 - Bookhagen, Bodo A1 - Echtler, Helmut Peter A1 - Melnick, Daniel A1 - Strecker, Manfred A1 - Spencer, Joel Q. G. T1 - Using uplifted Holocene beach berms for paleoseismic analysis on the Santa Maria Island, south-central Chile N2 - Major earthquakes ( M > 8) have repeatedly ruptured the Nazca-South America plate interface of south-central Chile involving meter scale land-level changes. Earthquake recurrence intervals, however, extending beyond limited historical records are virtually unknown, but would provide crucial data on the tectonic behavior of forearcs. We analyzed the spatiotemporal pattern of Holocene earthquakes on Santa Maria Island (SMI; 37 degrees S), located 20 km off the Chilean coast and approximately 70 km east of the trench. SMI hosts a minimum of 21 uplifted beach berms, of which a subset were dated to calculate a mean uplift rate of 2.3 +/- 0.2 m/ky and a tilting rate of 0.022 +/- 0.002 degrees/ky. The inferred recurrence interval of strandline-forming earthquakes is similar to 180 years. Combining coseismic uplift and aseismic subsidence during an earthquake cycle, the net gain in strandline elevation in this environment is similar to 0.4 m per event Y1 - 2006 UR - http://www.agu.org/journals/gl/ U6 - https://doi.org/10.1029/2006gl026734 SN - 0094-8276 ER - TY - JOUR A1 - Bookhagen, Bodo A1 - Thiede, Rasmus Christoph A1 - Strecker, Manfred T1 - Abnormal monsoon years and their control on erosion and sediment flux in the high, and northwest Himalaya N2 - The interplay between topography and Indian summer monsoon circulation profoundly controls precipitation distribution, sediment transport, and river discharge along the Southern Himalayan Mountain Front (SHF). The Higher Himalayas form a major orographic barrier that separates humid sectors to the south and and regions to the north. During the Indian summer monsoon, vortices transport moisture from the Bay of Bengal, swirl along the SHF to the northwest, and cause heavy rainfall when colliding with the mountain front. In the eastern and central parts of the Himalaya, precipitation measurements derived from passive microwave analysis (SSM/I) show a strong gradient, with high values at medium elevations and extensive penetration of moisture along major river valleys into the orogen. The end of the monsoonal conveyer belt is near the Sutlej Valley in the NW Himalaya, where precipitation is lower and rainfall maxima move to lower elevations. This region thus comprises a climatic transition zone that is very sensitive to changes in Indian summer monsoon strength. To constrain magnitude, temporal, and spatial distribution of precipitation, we analyzed high-resolution passive microwave data from the last decade and identified an abnormal monsoon year (AMY) in 2002. During the 2002 AMY, violent rainstorms conquered orographic barriers and penetrated far into otherwise and regions in the northwest Himalaya at elevations in excess of 3 km asl. While precipitation in these regions was significantly increased and triggered extensive erosional processes (i.e., debris flows) on sparsely vegetated, steep hillslopes, mean rainfall along the low to medium elevations was not significantly greater in magnitude. This shift may thus play an important role in the overall sediment flux toward the Himalayan foreland. Using extended precipitation and sediment flux records for the last century, we show that these events have a decadal recurrence interval during the present-day monsoon circulation. Hence, episodically occurring AMYs control geomorphic processes primarily in the high-elevation and sectors of the orogen, while annual recurring monsoonal rainfall distribution dominates erosion in the low- to medium- elevation parts along the SHF. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Bookhagen, Bodo A1 - Thiede, Rasmus Christoph A1 - Strecker, Manfred T1 - Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya N2 - The intensity of the Asian summer-monsoon circulation varies over decadal to millennial time scales and is reflected in changes in surface processes, terrestrial environments, and marine sediment records. However, the mechanisms of long-lived (2-5 k.y.) intensified monsoon phases, the related changes in precipitation distribution, and their effect on landscape evolution and sedimentation rates are not yet well understood. The and high-elevation sectors of the orogen correspond to a climatically sensitive zone that currently receives rain only during abnormal (i.e., strengthened) monsoon seasons. Analogous to present-day rainfall anomalies, enhanced precipitation during an intensified monsoon phase is expected to have penetrated far into these geomorphic threshold regions where hillslopes are close to the angle of failure. We associate landslide triggering during intensified monsoon phases with enhanced precipitation, discharge, and sediment flux leading to an increase in pore-water pressure, lateral scouring of rivers, and over- steepening of hillslopes, eventually resulting in failure of slopes and exceptionally large mass movements. Here we use lacustrine deposits related to spatially and temporally clustered large landslides (>0.5 km(3)) in the Sutlej Valley region of the northwest Himalaya to calculate sedimentation rates and to infer rainfall patterns during late Pleistocene (29-24 ka) and Holocene (10-4 ka) intensified monsoon phases. Compared to present-day sediment-flux measurements, a fivefold increase in sediment-transport rates recorded by sediments in landslide-dammed lakes characterized these episodes of high climatic variability. These changes thus emphasize the pronounced imprint of millennial-scale climate change on surface processes and landscape evolution Y1 - 2005 SN - 0091-7613 ER -