TY - JOUR A1 - Blanchard, Ingrid A1 - Abeykoon, Sumith A1 - Frost, Daniel J. A1 - Rubie, David C. T1 - Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions JF - American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America N2 - The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean. KW - Peridotitic melts KW - sulfur solubility KW - high pressure KW - high temperature KW - magma ocean Y1 - 2021 U6 - https://doi.org/10.2138/am-2021-7649 SN - 0003-004X SN - 1945-3027 VL - 106 IS - 11 SP - 1835 EP - 1843 PB - Mineralogical Society of America CY - Washington, DC [u.a.] ER - TY - JOUR A1 - Hosseinzadeh, Griffin A1 - Cowperthwaite, Philip S. A1 - Gomez, Sebastian A1 - Villar, Victoria Ashley A1 - Nicholl, Matt A1 - Margutti, Raffaella A1 - Berger, Edo A1 - Chornock, Ryan A1 - Paterson, Kerry A1 - Fong, Wen-fai A1 - Savchenko, Volodymyr A1 - Short, Phil A1 - Alexander, Kate D. A1 - Blanchard, Peter K. A1 - Braga, Joao A1 - Calkins, Michael L. A1 - Cartier, Regis A1 - Coppejans, Deanne L. A1 - Eftekhari, Tarraneh A1 - Laskar, Tanmoy A1 - Ly, Chun A1 - Patton, Locke A1 - Pelisoli, Ingrid Domingos A1 - Reichart, Daniel E. A1 - Terreran, Giacomo A1 - Williams, Peter K. G. T1 - Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - On 2019 April 25.346 and 26.640 UT the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo gravitational-wave (GW) observatory announced the detection of the first candidate events in Observing Run 3 that contained at least one neutron star (NS). S190425z is a likely binary neutron star (BNS) merger at d(L) = 156 +/- 41 Mpc, while S190426c is possibly the first NS-black hole (BH) merger ever detected, at d(L) = 377 +/- 100 Mpc, although with marginal statistical significance. Here we report our optical follow-up observations for both events using the MMT 6.5 m telescope, as well as our spectroscopic follow-up of candidate counterparts (which turned out to be unrelated) with the 4.1 m SOAR telescope. We compare to publicly reported searches, explore the overall areal coverage and depth, and evaluate those in relation to the optical/near-infrared (NIR) kilonova emission from the BNS merger GW170817, to theoretical kilonova models, and to short gamma-ray burst (SGRB) afterglows. We find that for a GW170817-like kilonova, the partial volume covered spans up to about 40% for S190425z and 60% for S190426c. For an on-axis jet typical of SGRBs, the search effective volume is larger, but such a configuration is expected in at most a few percent of mergers. We further find that wide-field gamma-ray and X-ray limits rule out luminous on-axis SGRBs, for a large fraction of the localization regions, although these searches are not sufficiently deep in the context of the gamma-ray emission from GW170817 or off-axis SGRB afterglows. The results indicate that some optical follow-up searches are sufficiently deep for counterpart identification to about 300 Mpc, but that localizations better than 1000 deg(2) are likely essential. KW - binaries: close KW - gravitational waves KW - methods: observational KW - stars: black holes KW - stars: neutron Y1 - 2019 U6 - https://doi.org/10.3847/2041-8213/ab271c SN - 2041-8205 SN - 2041-8213 VL - 880 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -