TY - JOUR A1 - Tosi, Federico A1 - Capaccioni, F. A1 - Capria, M. T. A1 - Mottola, Stefano A1 - Zinzi, A. A1 - Ciarniello, M. A1 - Filacchione, G. A1 - Hofstadter, M. A1 - Fonti, S. A1 - Formisano, M. A1 - Kappel, David A1 - Kührt, E. A1 - Leyrat, C. A1 - Vincent, J-B A1 - Arnold, G. A1 - De Sanctis, M. C. A1 - Longobardo, Andrea A1 - Palomba, E. A1 - Raponi, A. A1 - Rousseau, Batiste A1 - Schmitt, Bernard A1 - Barucci, Maria Antonietta A1 - Bellucci, Giancarlo A1 - Benkhoff, Johannes A1 - Bockelee-Morvan, D. A1 - Cerroni, P. A1 - Combe, J-Ph A1 - Despan, D. A1 - Erard, Stéphane A1 - Mancarella, F. A1 - McCord, T. B. A1 - Migliorini, Alessandra A1 - Orofino, V A1 - Piccioni, G. T1 - The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects JF - Nature astronomy N2 - Knowledge of the surface temperature distribution on a comet’s nucleus and its temporal evolution at different timescales is key to constraining its thermophysical properties and understanding the physical processes that take place at and below the surface. Here we report on time-resolved maps of comet 67P/Churyumov–Gerasimenko retrieved on the basis of infrared data acquired by the Visible InfraRed and Thermal Imaging Spectrometer (VIRTIS) onboard the Rosetta orbiter in 2014, over a roughly two-month period in the pre-perihelion phase at heliocentric distances between 3.62 and 3.31 au from the Sun. We find that at a spatial resolution ≤15 m per pixel, the measured temperatures point out the major effect that self-heating, due to the complex shape of the nucleus, has on the diurnal temperature variation. The bilobate nucleus of comet 67P also induces daytime shadowing effects, which result in large thermal gradients. Over longer periods, VIRTIS-derived temperature values reveal seasonal changes driven by decreasing heliocentric distance combined with an increasing abundance of ice within the uppermost centimetre-thick layer, which implies the possibility of having a largely pristine nucleus interior already in the shallow subsurface Y1 - 2019 U6 - https://doi.org/10.1038/s41550-019-0740-0 SN - 2397-3366 VL - 3 IS - 7 SP - 649 EP - 658 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Toy, Virginia Gail A1 - Sutherland, Rupert A1 - Townend, John A1 - Allen, Michael J. A1 - Becroft, Leeza A1 - Boles, Austin A1 - Boulton, Carolyn A1 - Carpenter, Brett A1 - Cooper, Alan A1 - Cox, Simon C. A1 - Daube, Christopher A1 - Faulkner, D. R. A1 - Halfpenny, Angela A1 - Kato, Naoki A1 - Keys, Stephen A1 - Kirilova, Martina A1 - Kometani, Yusuke A1 - Little, Timothy A1 - Mariani, Elisabetta A1 - Melosh, Benjamin A1 - Menzies, Catriona D. A1 - Morales, Luiz A1 - Morgan, Chance A1 - Mori, Hiroshi A1 - Niemeijer, Andre A1 - Norris, Richard A1 - Prior, David A1 - Sauer, Katrina A1 - Schleicher, Anja Maria A1 - Shigematsu, Norio A1 - Teagle, Damon A. H. A1 - Tobin, Harold A1 - Valdez, Robert A1 - Williams, Jack A1 - Yeo, Samantha A1 - Baratin, Laura-May A1 - Barth, Nicolas A1 - Benson, Adrian A1 - Boese, Carolin A1 - Célérier, Bernard A1 - Chamberlain, Calum J. A1 - Conze, Ronald A1 - Coussens, Jamie A1 - Craw, Lisa A1 - Doan, Mai-Linh A1 - Eccles, Jennifer A1 - Grieve, Jason A1 - Grochowski, Julia A1 - Gulley, Anton A1 - Howarth, Jamie A1 - Jacobs, Katrina A1 - Janku-Capova, Lucie A1 - Jeppson, Tamara A1 - Langridge, Robert A1 - Mallyon, Deirdre A1 - Marx, Ray A1 - Massiot, Cécile A1 - Mathewson, Loren A1 - Moore, Josephine A1 - Nishikawa, Osamu A1 - Pooley, Brent A1 - Pyne, Alex A1 - Savage, Martha K. A1 - Schmitt, Doug A1 - Taylor-Offord, Sam A1 - Upton, Phaedra A1 - Weaver, Konrad C. A1 - Wiersberg, Thomas A1 - Zimmer, Martin T1 - Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand JF - New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG N2 - During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled. KW - Alpine Fault KW - New Zealand KW - scientific drilling KW - mylonite KW - cataclasite Y1 - 2017 U6 - https://doi.org/10.1080/00288306.2017.1375533 SN - 0028-8306 SN - 1175-8791 VL - 60 IS - 4 SP - 497 EP - 518 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Poch, Olivier A1 - Istiqomah, Istiqomah A1 - Quirico, Eric A1 - Beck, Pierre A1 - Schmitt, Bernard A1 - Theulé, Patrice A1 - Faure, Alexandre A1 - Hily-Blant, Pierre A1 - Bonal, Lydie A1 - Kappel, David T1 - Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids JF - Science N2 - The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud. KW - resolution infrared-spectroscopy KW - ice absorption features KW - young stellar objects KW - exposed water ice KW - MU-M KW - bidirectional reflectance KW - murchison meteorite KW - interstellar ice KW - spectra KW - surface Y1 - 2020 U6 - https://doi.org/10.1126/science.aaw7462 SN - 1095-9203 SN - 0036-8075 VL - 367 IS - 6483 SP - 1 EP - 8 PB - AAAS, American Association for the Advancement of Science CY - Washington, DC ER - TY - GEN A1 - Poch, Olivier A1 - Istiqomah, Istiqomah A1 - Quirico, Eric A1 - Beck, Pierre A1 - Schmitt, Bernard A1 - Theulé, Patrice A1 - Faure, Alexandre A1 - Hily-Blant, Pierre A1 - Bonal, Lydie A1 - Kappel, David T1 - Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1389 KW - resolution infrared-spectroscopy KW - ice absorption features KW - young stellar objects KW - exposed water ice KW - MU-M KW - bidirectional reflectance KW - murchison meteorite KW - interstellar ice KW - spectra KW - surface Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-513751 SN - 1866-8372 N1 - This secondary publication was withdrawn for copyright reasons. IS - 6483 ER -