TY - JOUR A1 - Pudell, Jan-Etienne A1 - Maznev, A. A. A1 - Herzog, Marc A1 - Kronseder, M. A1 - Back, Christian H. A1 - Malinowski, Gregory A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction JF - Nature Communications N2 - Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05693-5 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Herzog, Marc A1 - von Reppert, Alexander A1 - Pudell, Jan-Etienne A1 - Henkel, Carsten A1 - Kronseder, Matthias A1 - Back, Christian H. A1 - Maznev, Alexei A. A1 - Bargheer, Matias T1 - Phonon-dominated energy transport in purely metallic heterostructures JF - Advanced functional materials N2 - Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au. KW - heterostructures KW - nanoscale energy transports KW - non-equilibrium KW - thermal KW - transports KW - ultrafast phenomena Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202206179 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 41 PB - Wiley-VCH CY - Weinheim ER -