TY - JOUR A1 - Mishra, Praveen Kumar A1 - Prasad, Sushma A1 - Jehangir, Arshid A1 - Anoop, Ambili A1 - Yousuf, Abdul R. A1 - Gaye, Birgit T1 - Investigating the role of meltwater versus precipitation seasonality in abrupt lake-level rise in the high-altitude Tso Moriri Lake (India) JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - We present late Quaternary lake level reconstruction from the high altitude Tso Moriri Lake (NW Indian Himalaya) using a combination of new and published data from shallow and deep water cores, and catchment geomorphology. Our reconstruction indicates two dramatic lake level increases - a late glacial (ca. 16.4-12.6 cal kyr B.P.) rise of 65 m, and a 47 m rise during the early Holocene wet phase (ca. 11.2-8.5 cal kyr B.P.) which are separated by the Younger Dryas (YD) event. We decouple the role of precipitation seasonality and snow melt using a combination of proxies sensitive to the Indian Summer Monsoon (ISM), and a regional spatio-temporal transect that provides information on the eastward penetration of the winter westerlies. A comparison of shallow and deep water cores shows that (i) the first lake level increase (similar to 65 m, ca. 16.4-12.6 cal kyr B.P.) is caused by melt water inflow triggered by the increasing summer insolation; (ii) the second lake level increase (similar to 47 m, 11.2-8.5 cal kyr B.P.) is largely caused by a rise in annual precipitation coupled with reduced summer evaporation; (iii) in contrast to the onset of ISM (Bay of Bengal branch) at ca. 14.7 ka in lower elevations in NE India, the hydroclimatic influence of ISM in the high altitude Himalaya is seen only between 12.7 and 12 cal kyr B.P., though the influence of solar insolation (via increased snowmelt) is visible from 16.4 cal kyr B.P. onwards; (iv) the eastward penetration of westerlies in Indian Himalayas is strongly influenced by the strength of the Siberian High. KW - Indian Summer Monsoon KW - Westerlies KW - Lake level reconstruction KW - Endogenic carbonates Y1 - 2018 U6 - https://doi.org/10.1016/j.palaeo.2017.12.026 SN - 0031-0182 SN - 1872-616X VL - 493 SP - 20 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mishra, Praveen Kumar A1 - Prasad, Sushma A1 - Anoop, A. A1 - Plessen, Birgit A1 - Jehangir, Arshid A1 - Gaye, Birgit A1 - Menzel, Philip A1 - Weise, Stephan M. A1 - Yousuf, Abdul R. T1 - Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - High resolution isotopic (delta O-18 and delta C-13) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporationj (WE) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate delta O-18 variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2-8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate delta O-18. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya. (C) 2015 Elsevier B.V. All rights reserved. KW - Carbonates KW - Holocene KW - Indian summer monsoon KW - Isotopes KW - Tso Moriri Lake Y1 - 2015 U6 - https://doi.org/10.1016/j.palaeo.2015.02.031 SN - 0031-0182 SN - 1872-616X VL - 425 SP - 76 EP - 83 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mishra, Praveen Kumar A1 - Anoop, Ambili A1 - Schettler, Georg A1 - Prasad, Sushma A1 - Jehangir, Arshid A1 - Menzel, Peter A1 - Naumann, Rudolf A1 - Yousuf, A. R. A1 - Basavaiah, Nathani A1 - Deenadayalan, Kannan A1 - Wiesner, Martin G. A1 - Gaye, Birgit T1 - Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - We present the results of our investigations on the radiocarbon dated core sediments from the Lake Tso Moriri, NW Himalaya aimed at reconstructing palaeohydrological changes in this climatically sensitive region. Based on the detailed geochemical, mineralogical and sedimentological analysis, we recognise several short-term fluctuations superimposed upon seven major palaeohydrological stages identified in this lake since similar to 26 cal ka. Stage I (>20.2 cal ka): shallow lake characterised by input of coarse-grained detrital sediments; Stage II (20.2-16.4 cal ka): lake deepening and intensification of this trend ca. 18 cal ka; Stage III (16.4-11.2 cal ka): rising lake levels with a short term wet phase (13.1-11.7 cal ka); Stage IV (11.2-8.5 cal ka): early Holocene hydrological maxima and highest lake levels inferred to have resulted from early Holocene Indian monsoon intensification, as records from central Asia indicate weaker westerlies during this interval; Stage V (8.5-5.5 cal ka): mid-Holocene climate deterioration; Stage VI (5.5-2.7 cal ka): progressive lowering of lake level; Stage VII (2.7-0 cal ka): onset of modern conditions. The reconstructed hydrological variability in Lake Tso Moriri is governed by temperature changes (meltwater inflow) and monsoon precipitation (increased runoff). A regional comparison shows considerable differences with other palaeorecords from peninsular India during late Holocene. (C) 2014 Elsevier Ltd and INQUA. All rights reserved. KW - Authigenic carbonates KW - Holocene KW - Indian summer monsoon KW - Lake sediments KW - Tso Moriri Lake KW - Westerlies Y1 - 2015 U6 - https://doi.org/10.1016/j.quaint.2014.11.040 SN - 1040-6182 SN - 1873-4553 VL - 371 SP - 76 EP - 86 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Prasad, Sushma A1 - Mishra, Praveen Kumar A1 - Menzel, Philip A1 - Gaye, Birgit A1 - Jehangir, Arshid A1 - Yousuf, Abdul R. T1 - Testing the validity of productivity proxy indicators in high altitude Tso Moriri Lake, NW Himalaya (India) JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - We use multiple proxies (delta C-13(org), delta N-15(org), C/N, amino acids, biogenic silica) from the catchment, lake surface and core sediments to (i) identify the factors influencing conventional lacustrine primary productivity (LPP) indicators (isotopic covariance, C/N) in the sediments from the pristine high altitude Tso Moriri Lake during the late Quaternary, (ii) compare C/N and bulk organic isotopic data from the core with available biogenic silica and amino acid data to test the applicability of conventional LPP indicators during the late Quaternary, and (iii) evaluate the degree of sensitivity of LPP to climate change. Our results show that climate driven changes in water salinity and source water changes have influenced the isotopic (delta C-13, delta N-15) content of the lake water and hence the isotopic composition of bulk organic matter. Erosion has also played a role in masking the LPP as the catchment sediments from this high altitude lake have low C/N thereby casting doubt on the effectiveness of this parameter as an LPP indicator. Independent LPP indicators in Tso Moriri sediments clearly indicate that it is driven by climate change and increases during warmer periods. However, our data show that the LPP in recent times is not much higher than during the early Holocene, ruling out any impact of recent warming on LPP and therefore the possibility of large carbon sequestration in high altitude oligotrophic lakes. (C) 2016 Elsevier B.V. All rights reserved. KW - Tso Moriri Lake KW - isotopes KW - lacustrine primary productivity (LPP) KW - Indian monsoon KW - late Quaternary Y1 - 2016 U6 - https://doi.org/10.1016/j.palaeo.2016.02.027 SN - 0031-0182 SN - 1872-616X VL - 449 SP - 421 EP - 430 PB - Elsevier CY - Amsterdam ER -