TY - GEN A1 - Blenau, Wolfgang A1 - Baumann, Arnd T1 - Aminergic signal transduction in invertebrates : focus on tyramine and octopamine receptors N2 - Electro-chemical signal transduction is the basis of communication between n eurons and their target cells. An important group of neuroactive substances that are released by action potentials from neurons are the biogenic amines. These a re small organic molecules that bind to specific receptors located in the target cell membrane. Once activated these receptors cause changes in the intracellula r concentration of second messengers, i.e. cyclic nucleotides, phosphoinositides , or Ca2+, leading to slow but long-lasting cellular responses. Biochemical, pha rmacological, physiological, and molecular biological approaches have unequivoca lly shown that biogenic amines are important regulators of cellular function in both vertebrates and invertebrates. In this review, we will concentrate on the p roperties of two biogenic amines and their receptors that were originally identi fied in invertebrates: tyramine and octopamine.  T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 107 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44271 ER - TY - JOUR A1 - Thamm, Markus A1 - Balfanz, Sabine A1 - Scheiner, Richarda A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior N2 - Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT1 receptor class. Activation of Am5-HT1A by serotonin inhibited the production of cAMP in a dose-dependent manner (EC50 = 16.9 nM). Am5-HT1A was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT1A receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT1A receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. Y1 - 2010 UR - http://www.springerlink.com/content/101193 U6 - https://doi.org/10.1007/s00018-010-0350-6 SN - 1420-682X ER - TY - JOUR A1 - Thamm, Markus A1 - Rolke, Daniel A1 - Jordan, Nadine A1 - Balfanz, Sabine A1 - Schiffer, Christian A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Function and distribution of 5-HT2 receptors in the honeybee (apis mellifera) JF - PLoS one N2 - Background: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2 alpha and Am5-HT2 beta. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0082407 SN - 1932-6203 VL - 8 IS - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Troppmann, Britta A1 - Balfanz, Sabine A1 - Krach, Christian A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana JF - International journal of molecular sciences N2 - We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology. KW - G-protein-coupled receptor KW - dopamine KW - insect KW - cellular signaling KW - salivary gland KW - biogenic amine Y1 - 2014 U6 - https://doi.org/10.3390/ijms15010629 SN - 1422-0067 VL - 15 IS - 1 SP - 629 EP - 653 PB - MDPI CY - Basel ER - TY - JOUR A1 - Blenau, Wolfgang A1 - Baumann, Arnd T1 - Molecular and pharmacological properties of insect biogenic amine receptors : lessons from Drosophila melanogaster and Apis mellifera Y1 - 2001 SN - 0739-4462 ER -