TY - JOUR A1 - Nagornov, Roman A1 - Osipoy, Grigory A1 - Komarov, Maxim A1 - Pikovskij, Arkadij A1 - Shilnikov, Andrey T1 - Mixed-mode synchronization between two inhibitory neurons with post-inhibitory rebound JF - Communications in nonlinear science & numerical simulation N2 - We study an array of activity rhythms generated by a half-center oscillator (HCO), represented by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling induced bursting possesses two time scales, one for fast spiking and another for slow quiescent periods, is shown to exhibit an array of synchronization properties. We discuss several HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent neurons, as well as mixed-mode configurations composed of neurons of different type. We demonstrate that burst synchronization can be accompanied by complex, often chaotic, interactions of fast spikes within synchronized bursts. (C) 2015 Elsevier B.V. All rights reserved. KW - Synchronization KW - Hodgkin-Huxley model KW - Half-center oscillator KW - Post-inhibitory rebound Y1 - 2016 U6 - https://doi.org/10.1016/j.cnsns.2015.11.024 SN - 1007-5704 SN - 1878-7274 VL - 36 SP - 175 EP - 191 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Xiyun A1 - Pikovskij, Arkadij A1 - Liu, Zonghua T1 - Dynamics of oscillators globally coupled via two mean fields JF - Scientific reports N2 - Many studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing a potential generalized framework for understanding of complex phenomena in natural oscillatory systems. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-02283-1 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zaks, Michael A1 - Pikovskij, Arkadij T1 - Chimeras and complex cluster states in arrays of spin-torque oscillators JF - Scientific reports N2 - We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-04918-9 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Politi, Antonio A1 - Pikovskij, Arkadij A1 - Ullner, Ekkehard T1 - Chaotic macroscopic phases in one-dimensional oscillators JF - European physical journal special topics N2 - The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges. Y1 - 2017 U6 - https://doi.org/10.1140/epjst/e2017-70056-4 SN - 1951-6355 SN - 1951-6401 VL - 226 SP - 1791 EP - 1810 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Pimenova, Anastasiya V. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble JF - European physical journal special topics N2 - We describe analytically synchronization and desynchronization effects in an ensemble of phase oscillators driven by common noise and by global coupling. Adopting the Ott-Antonsen ansatz, we reduce the dynamics to closed stochastic equations for the order parameters, and study these equations for the cases of populations of identical and nonidentical oscillators. For nonidentical oscillators we demonstrate a counterintuitive effect of divergence of individual frequencies for moderate repulsive coupling, while the order parameter remains large. Y1 - 2017 U6 - https://doi.org/10.1140/epjst/e2017-70039-y SN - 1951-6355 SN - 1951-6401 VL - 226 SP - 1921 EP - 1937 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Pikovskij, Arkadij T1 - Reconstruction of a neural network from a time series of firing rates JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Randomly coupled neural fields demonstrate irregular variation of firing rates, if the coupling is strong enough, as has been shown by Sompolinsky et al. [Phys. Rev. Lett. 61, 259 (1988)]. We present a method for reconstruction of the coupling matrix from a time series of irregular firing rates. The approach is based on the particular property of the nonlinearity in the coupling, as the latter is determined by a sigmoidal gain function. We demonstrate that for a large enough data set and a small measurement noise, the method gives an accurate estimation of the coupling matrix and of other parameters of the system, including the gain function. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.93.062313 SN - 2470-0045 SN - 2470-0053 VL - 93 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pikovskij, Arkadij T1 - Reconstruction of a scalar voltage-based neural field network from observed time series JF - epl : a letters journal exploring the frontiers of physics Y1 - 2017 U6 - https://doi.org/10.1209/0295-5075/119/30004 SN - 0295-5075 SN - 1286-4854 VL - 119 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Gong, Chen Chris A1 - Zheng, Chunming A1 - Toenjes, Ralf A1 - Pikovskij, Arkadij T1 - Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider the Kuramoto-Sakaguchi model of identical coupled phase oscillators with a common noisy forcing. While common noise always tends to synchronize the oscillators, a strong repulsive coupling prevents the fully synchronous state and leads to a nontrivial distribution of oscillator phases. In previous numerical simulations, the formation of stable multicluster states has been observed in this regime. However, we argue here that because identical phase oscillators in the Kuramoto-Sakaguchi model form a partially integrable system according to the Watanabe-Strogatz theory, the formation of clusters is impossible. Integrating with various time steps reveals that clustering is a numerical artifact, explained by the existence of higher order Fourier terms in the errors of the employed numerical integration schemes. By monitoring the induced change in certain integrals of motion, we quantify these errors. We support these observations by showing, on the basis of the analysis of the corresponding Fokker-Planck equation, that two-cluster states are non-attractive. On the other hand, in ensembles of general limit cycle oscillators, such as Van der Pol oscillators, due to an anharmonic phase response function as well as additional amplitude dynamics, multiclusters can occur naturally. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5084144 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 3 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rosenblum, Michael A1 - Frühwirth, Martha A1 - Moser, Maximilian A1 - Pikovskij, Arkadij T1 - Dynamical disentanglement in an analysis of oscillatory systems: an application to respiratory sinus arrhythmia JF - Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences N2 - We develop a technique for the multivariate data analysis of perturbed self-sustained oscillators. The approach is based on the reconstruction of the phase dynamics model from observations and on a subsequent exploration of this model. For the system, driven by several inputs, we suggest a dynamical disentanglement procedure, allowing us to reconstruct the variability of the system's output that is due to a particular observed input, or, alternatively, to reconstruct the variability which is caused by all the inputs except for the observed one. We focus on the application of the method to the vagal component of the heart rate variability caused by a respiratory influence. We develop an algorithm that extracts purely respiratory-related variability, using a respiratory trace and times of R-peaks in the electrocardiogram. The algorithm can be applied to other systems where the observed bivariate data can be represented as a point process and a slow continuous signal, e.g. for the analysis of neuronal spiking. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'. KW - phase dynamics KW - point process KW - vagal sympathetic activity KW - autonomic nervous system Y1 - 2019 U6 - https://doi.org/10.1098/rsta.2019.0045 SN - 1364-503X SN - 1471-2962 VL - 377 IS - 2160 PB - Royal Society CY - London ER - TY - JOUR A1 - Peter, Franziska A1 - Gong, Chen Chris A1 - Pikovskij, Arkadij T1 - Microscopic correlations in the finite-size Kuramoto model of coupled oscillators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Supercritical Kuramoto oscillators with distributed frequencies can be separated into two disjoint groups: an ordered one locked to the mean field, and a disordered one consisting of effectively decoupled oscillators-at least so in the thermodynamic limit. In finite ensembles, in contrast, such clear separation fails: The mean field fluctuates due to finite-size effects and thereby induces order in the disordered group. This publication demonstrates this effect, similar to noise-induced synchronization, in a purely deterministic system. We start by modeling the situation as a stationary mean field with additional white noise acting on a pair of unlocked Kuramoto oscillators. An analytical expression shows that the cross-correlation between the two increases with decreasing ratio of natural frequency difference and noise intensity. In a deterministic finite Kuramoto model, the strength of the mean-field fluctuations is inextricably linked to the typical natural frequency difference. Therefore, we let a fluctuating mean field, generated by a finite ensemble of active oscillators, act on pairs of passive oscillators with a microscopic natural frequency difference between which we then measure the cross-correlation, at both super- and subcritical coupling. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevE.100.032210 SN - 2470-0045 SN - 2470-0053 VL - 100 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij T1 - Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators JF - The European physical journal : B, Condensed matter and complex systems N2 - We consider collective dynamics in the ensemble of serially connected spin-torque oscillators governed by the Landau-Lifshitz-Gilbert-Slonczewski magnetization equation. Proximity to homoclinicity hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homoclinic bifurcation, the growth rate per oscillation of small deviations from the ensemble mean diverges. Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochastic oscillations of the current through the circuit, may suppress precession of the magnetic field for all oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression. KW - Statistical and Nonlinear Physics Y1 - 2019 U6 - https://doi.org/10.1140/epjb/e2019-100152-2 SN - 1434-6028 SN - 1434-6036 VL - 92 IS - 7 PB - Springer CY - New York ER - TY - JOUR A1 - Zheng, Chunming A1 - Pikovskij, Arkadij T1 - Stochastic bursting in unidirectionally delay-coupled noisy excitable systems JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We show that "stochastic bursting" is observed in a ring of unidirectional delay-coupled noisy excitable systems, thanks to the combinational action of time-delayed coupling and noise. Under the approximation of timescale separation, i.e., when the time delays in each connection are much larger than the characteristic duration of the spikes, the observed rather coherent spike pattern can be described by an idealized coupled point processwith a leader-follower relationship. We derive analytically the statistics of the spikes in each unit, the pairwise correlations between any two units, and the spectrum of the total output from the network. Theory is in good agreement with the simulations with a network of theta-neurons. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5093180 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Nonlinear phase coupling functions: a numerical study JF - Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences N2 - Phase reduction is a general tool widely used to describe forced and interacting self-sustained oscillators. Here, we explore the phase coupling functions beyond the usual first-order approximation in the strength of the force. Taking the periodically forced Stuart-Landau oscillator as the paradigmatic model, we determine and numerically analyse the coupling functions up to the fourth order in the force strength. We show that the found nonlinear phase coupling functions can be used for predicting synchronization regions of the forced oscillator. KW - phase approximation KW - coupling function KW - phase response curve Y1 - 2019 U6 - https://doi.org/10.1098/rsta.2019.0093 SN - 1364-503X SN - 1471-2962 VL - 377 IS - 2160 PB - Royal Society CY - London ER - TY - JOUR A1 - Gengel, Erik A1 - Pikovskij, Arkadij T1 - Phase demodulation with iterative Hilbert transform embeddings JF - Signal processing N2 - We propose an efficient method for demodulation of phase modulated signals via iterated Hilbert transform embeddings. We show that while a usual approach based on one application of the Hilbert transform provides only an approximation to a proper phase, with iterations the accuracy is essentially improved, up to precision limited mainly by discretization effects. We demonstrate that the method is applicable to arbitrarily complex waveforms, and to modulations fast compared to the basic frequency. Furthermore, we develop a perturbative theory applicable to a simple cosine waveform, showing convergence of the technique. KW - Phase modulation KW - Hilbert transform KW - Embedding Y1 - 2019 U6 - https://doi.org/10.1016/j.sigpro.2019.07.005 SN - 0165-1684 SN - 1872-7557 VL - 165 SP - 115 EP - 127 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pawlik, Andreas H. A1 - Pikovskij, Arkadij T1 - Control of oscillators coherence by multiple delayed feedback JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - We demonstrate that a multiple delayed feedback is a powerful tool to control coherence properties of autonomous self-sustained oscillators. We derive the equation for the phase dynamics in presence of noise and delay, and analyze it analytically. In Gaussian approximation a closed set of equations for the frequency and the diffusion constant is obtained. Solutions of these equations are in good agreement with direct numerical simulations. KW - phase diffusion KW - delayed feedback KW - control Y1 - 2006 U6 - https://doi.org/10.1016/j.physleta.2006.05.013 SN - 0375-9601 VL - 358 IS - 3 SP - 181 EP - 185 PB - American Institute of Physics CY - Amsterdam ER - TY - GEN A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1188 KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524261 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Tyulkina, Irina V. A1 - Klimenko, Lyudmila S. A1 - Pikovskij, Arkadij T1 - Collective mode reductions for populations of coupled noisy oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We analyze the accuracy of different low-dimensional reductions of the collective dynamics in large populations of coupled phase oscillators with intrinsic noise. Three approximations are considered: (i) the Ott-Antonsen ansatz, (ii) the Gaussian ansatz, and (iii) a two-cumulant truncation of the circular cumulant representation of the original system’s dynamics. For the latter, we suggest a closure, which makes the truncation, for small noise, a rigorous first-order correction to the Ott-Antonsen ansatz, and simultaneously is a generalization of the Gaussian ansatz. The Kuramoto model with intrinsic noise and the population of identical noisy active rotators in excitable states with the Kuramoto-type coupling are considered as examples to test the validity of these approximations. For all considered cases, the Gaussian ansatz is found to be more accurate than the Ott-Antonsen one for high-synchrony states only. The two-cumulant approximation is always superior to both other approximations. Synchrony of large ensembles of coupled elements can be characterised by the order parameters—the mean fields. Quite often, the evolution of these collective variables is surprisingly simple, which makes a description with only a few order parameters feasible. Thus, one tries to construct accurate closed low-dimensional mathematical models for the dynamics of the first few order parameters. These models represent useful tools for gaining insight into the underlaying mechanisms of some more sophisticated collective phenomena: for example, one describes coupled populations by virtue of coupled equations for the relevant order parameters. A regular approach to the construction of closed low-dimensional systems is also beneficial for dealing with phenomena, which are beyond the applicability scope of these models; for instance, with such an approach, one can determine constraints on clustering in populations. There are two prominent types of situations, where the low-dimensional models can be constructed: (i) for a certain class of ideal paradigmatic systems of coupled phase oscillators, the Ott-Antonsen ansatz yields an exact equation for the main order parameter and (ii) the Gaussian approximation for the probability density of the phases, also yielding a low-dimensional closure, is frequently quite accurate. In this paper, we compare applications of these two model reductions for situations, where neither of them is perfectly accurate. Furthermore, we construct a new reduction approach which practically works as a first-order correction to the best of the two basic approximations. Y1 - 2018 U6 - https://doi.org/10.1063/1.5053576 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Gong, Chen Chris A1 - Pikovskij, Arkadij T1 - Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - The Kuramoto model, despite its popularity as a mean-field theory for many synchronization phenomenon of oscillatory systems, is limited to a first-order harmonic coupling of phases. For higher-order coupling, there only exists a low-dimensional theory in the thermodynamic limit. In this paper, we extend the formulation used by Watanabe and Strogatz to obtain a low-dimensional description of a system of arbitrary size of identical oscillators coupled all-to-all via their higher-order modes. To demonstrate an application of the formulation, we use a second harmonic globally coupled model, with a mean-field equal to the square of the Kuramoto mean-field. This model is known to exhibit asymmetrical clustering in previous numerical studies. We try to explain the phenomenon of asymmetrical clustering using the analytical theory developed here, as well as discuss certain phenomena not observed at the level of first-order harmonic coupling. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevE.100.062210 SN - 2470-0045 SN - 2470-0053 VL - 100 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Numerical phase reduction beyond the first order approximation JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5079617 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 1 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Tyulkina, Irina A1 - Goldobin, Denis S. A1 - Klimenko, Lyudmila S. A1 - Pikovskij, Arkadij T1 - Dynamics of noisy oscillator populations beyond the Ott-Antonsen Ansatz JF - Physical review letters N2 - We develop an approach for the description of the dynamics of large populations of phase oscillators based on "circular cumulants" instead of the Kuramoto-Daido order parameters. In the thermodynamic limit, these variables yield a simple representation of the Ott-Antonsen invariant solution [E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008)] and appear appropriate for constructing perturbation theory on top of the Ott-Antonsen ansatz. We employ this approach to study the impact of small intrinsic noise on the dynamics. As a result, a closed system of equations for the two leading cumulants, describing the dynamics of noisy ensembles, is derived. We exemplify the general theory by presenting the effect of noise on the Kuramoto system and on a chimera state in two symmetrically coupled populations. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevLett.120.264101 SN - 0031-9007 SN - 1079-7114 VL - 120 IS - 26 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Efficient determination of synchronization domains from observations of asynchronous dynamics JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We develop an approach for a fast experimental inference of synchronization properties of an oscillator. While the standard technique for determination of synchronization domains implies that the oscillator under study is forced with many different frequencies and amplitudes, our approach requires only several observations of a driven system. Reconstructing the phase dynamics from data, we successfully determine synchronization domains of noisy and chaotic oscillators. Our technique is especially important for experiments with living systems where an external action can be harmful and shall be minimized. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5037012 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Zheng, Chunming A1 - Pikovskij, Arkadij T1 - Delay-induced stochastic bursting in excitable noisy systems JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We show that a combined action of noise and delayed feedback on an excitable theta-neuron leads to rather coherent stochastic bursting. An idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevE.98.042148 SN - 2470-0045 SN - 2470-0053 VL - 98 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Rosenau, Philip A1 - Pikovskij, Arkadij T1 - Solitary phase waves in a chain of autonomous oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - In the present paper, we study phase waves of self-sustained oscillators with a nearest-neighbor dispersive coupling on an infinite lattice. To analyze the underlying dynamics, we approximate the lattice with a quasi-continuum (QC). The resulting partial differential model is then further reduced to the Gardner equation, which predicts many properties of the underlying solitary structures. Using an iterative procedure on the original lattice equations, we determine the shapes of solitary waves, kinks, and the flat-like solitons that we refer to as flatons. Direct numerical experiments reveal that the interaction of solitons and flatons on the lattice is notably clean. All in all, we find that both the QC and the Gardner equation predict remarkably well the discrete patterns and their dynamics. Y1 - 2020 U6 - https://doi.org/10.1063/1.5144939 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 5 PB - American Institute of Physics, AIP CY - Melville, NY ER - TY - JOUR A1 - Pikovskij, Arkadij T1 - Transition to synchrony in chiral active particles JF - Journal of physics. Complexity N2 - I study deterministic dynamics of chiral active particles in two dimensions. Particles are considered as discs interacting with elastic repulsive forces. An ensemble of particles, started from random initial conditions, demonstrates chaotic collisions resulting in their normal diffusion. This chaos is transient, as rather abruptly a synchronous collisionless state establishes. The life time of chaos grows exponentially with the number of particles. External forcing (periodic or chaotic) is shown to facilitate the synchronization transition. KW - active particles KW - chirality KW - synchronization KW - chaos KW - transient chaos Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/abdadb SN - 2632-072X VL - 2 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pikovskij, Arkadij T1 - Chimeras on a social-type network JF - Mathematical modelling of natural phenomena : MMNP N2 - We consider a social-type network of coupled phase oscillators. Such a network consists of an active core of mutually interacting elements, and of a flock of passive units, which follow the driving from the active elements, but otherwise are not interacting. We consider a ring geometry with a long-range coupling, where active oscillators form a fluctuating chimera pattern. We show that the passive elements are strongly correlated. This is explained by negative transversal Lyapunov exponents. KW - Network KW - Chimera KW - correlations KW - Lyapunov exponent Y1 - 2021 U6 - https://doi.org/10.1051/mmnp/2021012 SN - 0973-5348 SN - 1760-6101 VL - 16 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Zheng, Chunming A1 - Toenjes, Ralf A1 - Pikovskij, Arkadij T1 - Transition to synchrony in a three-dimensional swarming model with helical trajectories JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate the transition from incoherence to global collective motion in a three-dimensional swarming model of agents with helical trajectories, subject to noise and global coupling. Without noise this model was recently proposed as a generalization of the Kuramoto model and it was found that alignment of the velocities occurs discontinuously for arbitrarily small attractive coupling. Adding noise to the system resolves this singular limit and leads to a continuous transition, either to a directed collective motion or to center-of-mass rotations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.014216 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 1 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Topçu, Çağdaş A1 - Frühwirth, Matthias A1 - Moser, Maximilian A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Disentangling respiratory sinus arrhythmia in heart rate variability records T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Objective: Several different measures of heart rate variability, and particularly of respiratory sinus arrhythmia, are widely used in research and clinical applications. For many purposes it is important to know which features of heart rate variability are directly related to respiration and which are caused by other aspects of cardiac dynamics. Approach: Inspired by ideas from the theory of coupled oscillators, we use simultaneous measurements of respiratory and cardiac activity to perform a nonlinear disentanglement of the heart rate variability into the respiratory-related component and the rest. Main results: The theoretical consideration is illustrated by the analysis of 25 data sets from healthy subjects. In all cases we show how the disentanglement is manifested in the different measures of heart rate variability. Significance: The suggested technique can be exploited as a universal preprocessing tool, both for the analysis of respiratory influence on the heart rate and in cases when effects of other factors on the heart rate variability are in focus. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 913 KW - respiratory sinus arrhythmia KW - heart rate variability KW - coupled oscillators model KW - phase dynamics KW - data analysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436315 SN - 1866-8372 IS - 913 ER - TY - JOUR A1 - Cestnik, Rok A1 - Pikovskij, Arkadij T1 - Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott-Antonsen and Watanabe-Strogatz theories JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Populations of globally coupled phase oscillators are described in the thermodynamic limit by kinetic equations for the distribution densities or, equivalently, by infinite hierarchies of equations for the order parameters. Ott and Antonsen [Chaos 18, 037113 (2008)] have found an invariant finite-dimensional subspace on which the dynamics is described by one complex variable per population. For oscillators with Cauchy distributed frequencies or for those driven by Cauchy white noise, this subspace is weakly stable and, thus, describes the asymptotic dynamics. Here, we report on an exact finite-dimensional reduction of the dynamics outside of the Ott-Antonsen subspace. We show that the evolution from generic initial states can be reduced to that of three complex variables, plus a constant function. For identical noise-free oscillators, this reduction corresponds to the Watanabe-Strogatz system of equations [Watanabe and Strogatz, Phys. Rev. Lett. 70, 2391 (1993)]. We discuss how the reduced system can be used to explore the transient dynamics of perturbed ensembles. Published under an exclusive license by AIP Publishing. Y1 - 2022 U6 - https://doi.org/10.1063/5.0106171 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 11 PB - AIP CY - Melville ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Dolmatova, A. A1 - Goldobin, Denis S. T1 - Correlations of the States of Non-Entrained Oscillators in the Kuramoto Ensemble with Noise in the Mean Field JF - Radiophysics and Quantum Electronics N2 - We consider the dynamics of the Kuramoto ensemble oscillators not included in a common synchronized cluster, where the mean field is subject to fluctuations. The fluctuations can be either related to the finite size of the ensemble or superimposed on the mean field in the form of common noise due to the constructive features of the system. It is shown that the states of such oscillators with close natural frequencies appear correlated with each other, since the mean-field fluctuations act as common noise. We quantify the effect with the synchronization index of two oscillators, which is calculated numerically and analytically as a function of the frequency difference and noise intensity. The results are rigorous for large ensembles with additional noise superimposed on the mean field and are qualitatively true for the systems where the mean-field fluctuations are due to the finite size of the ensemble. In the latter case, the effect is found to be independent of the number of oscillators in the ensemble. Y1 - 2019 U6 - https://doi.org/10.1007/s11141-019-09927-4 SN - 0033-8443 SN - 1573-9120 VL - 61 IS - 8-9 SP - 672 EP - 680 PB - Springer CY - New York ER - TY - JOUR A1 - Tyulkina, Irina V. A1 - Goldobin, Denis S. A1 - Klimenko, Lyudmila S. A1 - Pikovskij, Arkadij T1 - Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles JF - Radiophysics and Quantum Electronics N2 - We have developed a method for deriving systems of closed equations for the dynamics of order parameters in the ensembles of phase oscillators. The Ott-Antonsen equation for the complex order parameter is a particular case of such equations. The simplest nontrivial extension of the Ott-Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto-Sakaguchi ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch chimeras in the case of identical phase elements and a transition to one-bunch "Abrams chimeras" for imperfect identity (in the latter case, the one-bunch chimeras become attractive). Y1 - 2019 U6 - https://doi.org/10.1007/s11141-019-09924-7 SN - 0033-8443 SN - 1573-9120 VL - 61 IS - 8-9 SP - 640 EP - 649 PB - Springer CY - New York ER - TY - JOUR A1 - Dolmatova, Anastasiya V. A1 - Goldobin, Denis S. A1 - Pikovskij, Arkadij T1 - Synchronization of coupled active rotators by common noise JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.96.062204 SN - 2470-0045 SN - 2470-0053 VL - 96 SP - E10648 EP - E10657 PB - American Physical Society CY - College Park ER - TY - BOOK A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Lyapunov Exponents BT - a tool to explore complex dynamics N2 - Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers. Y1 - 2016 SN - 978-1-107-03042-8 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Ginelli, F. A1 - Ahlers, Volker A1 - Livi, R. A1 - Mukamel, D. A1 - Pikovskij, Arkadij A1 - Politi, Antonio A1 - Torcini, A. T1 - From multiplicative noise to directed percolation in wetting transitions N2 - A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behavior observed along the transition line changes from a directed-percolation type to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions. Mean-field arguments and the mapping on yet a simpler model provide some further insight on the overall scenario Y1 - 2003 SN - 1063-651X ER - TY - JOUR A1 - Ahlers, Volker A1 - Pikovskij, Arkadij T1 - Critical Properties of the Synchronization Transition in Space-Time Chaos N2 - We study two coupled spatially extended dynamical systems which exhibit space-time chaos. The transition to the synchronized state is treated as a nonequilibrium phase transition, where the average synchronization error is the order parameter. The transition in one-dimensional systems is found to be generically in the universality class of the Kardar- Parisi-Zhang equation with a growth-limiting term ("bounded KPZ"). For systems with very strong nonlinearities in the local dynamics, however, the transition is found to be in the universality class of directed percolation. Y1 - 2002 ER - TY - GEN A1 - Pimenova, Anastasiya V. A1 - Goldobin, Denis S. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Interplay of coupling and common noise at the transition to synchrony in oscillator populations N2 - There are two ways to synchronize oscillators: by coupling and by common forcing, which can be pure noise. By virtue of the Ott-Antonsen ansatz for sine-coupled phase oscillators, we obtain analytically tractable equations for the case where both coupling and common noise are present. While noise always tends to synchronize the phase oscillators, the repulsive coupling can act against synchrony, and we focus on this nontrivial situation. For identical oscillators, the fully synchronous state remains stable for small repulsive coupling; moreover it is an absorbing state which always wins over the asynchronous regime. For oscillators with a distribution of natural frequencies, we report on a counter-intuitive effect of dispersion (instead of usual convergence) of the oscillators frequencies at synchrony; the latter effect disappears if noise vanishes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 310 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103471 ER - TY - JOUR A1 - Goldschmidt, Richard Janis A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Blinking chimeras in globally coupled rotators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - In globally coupled ensembles of identical oscillators so-called chimera states can be observed. The chimera state is a symmetry-broken regime, where a subset of oscillators forms a cluster, a synchronized population, while the rest of the system remains a collection of nonsynchronized, scattered units. We describe here a blinking chimera regime in an ensemble of seven globally coupled rotators (Kuramoto oscillators with inertia). It is characterized by a death-birth process, where a long-term stable cluster of four oscillators suddenly dissolves and is very quickly reborn with a new reshuffled configuration. We identify three different kinds of rare blinking events and give a quantitative characterization by applying stability analysis to the long-lived chaotic state and to the short-lived regular regimes that arise when the cluster dissolves. Y1 - 2019 U6 - https://doi.org/10.1063/1.5105367 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Sysoev, Ilya V. A1 - Ponomarenko, Vladimir I. A1 - Pikovskij, Arkadij T1 - Reconstruction of coupling architecture of neural field networks from vector time series JF - Communications in nonlinear science & numerical simulation N2 - We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques. KW - Network reconstruction KW - Time series KW - Neurooscillators KW - Time delay Y1 - 2017 U6 - https://doi.org/10.1016/j.cnsns.2017.10.006 SN - 1007-5704 SN - 1878-7274 VL - 57 SP - 342 EP - 351 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Blaha, Karen A. A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Clark, Matthew T. A1 - Rusin, Craig G. A1 - Hudson, John L. T1 - Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Phase models are a powerful method to quantify the coupled dynamics of nonlinear oscillators from measured data. We use two phase modeling methods to quantify the dynamics of pairs of coupled electrochemical oscillators, based on the phases of the two oscillators independently and the phase difference, respectively. We discuss the benefits of the two-dimensional approach relative to the one-dimensional approach using phase difference. We quantify the dependence of the coupling functions on the coupling magnitude and coupling time delay. We show differences in synchronization predictions of the two models using a toy model. We show that the two-dimensional approach reveals behavior not detected by the one-dimensional model in a driven experimental oscillator. This approach is broadly applicable to quantify interactions between nonlinear oscillators, especially where intrinsic oscillator sensitivity and coupling evolve with time. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevE.84.046201 SN - 1539-3755 VL - 84 IS - 4 PB - American Physical Society CY - College Park ER - TY - INPR A1 - Pikovskij, Arkadij A1 - Zaks, Michael A. A1 - Feudel, Ulrike A1 - Kurths, Jürgen T1 - Singular continuous spectra in dissipative dynamics N2 - We demonstrate the occurrence of regimes with singular continuous (fractal) Fourier spectra in autonomous dissipative dynamical systems. The particular example in an ODE system at the accumulation points of bifurcation sequences associated to the creation of complicated homoclinic orbits. Two different machanisms responsible for the appearance of such spectra are proposed. In the first case when the geometry of the attractor is symbolically represented by the Thue-Morse sequence, both the continuous-time process and its descrete Poincaré map have singular power spectra. The other mechanism owes to the logarithmic divergence of the first return times near the saddle point; here the Poincaré map possesses the discrete spectrum, while the continuous-time process displays the singular one. A method is presented for computing the multifractal characteristics of the singular continuous spectra with the help of the usual Fourier analysis technique. T3 - NLD Preprints - 15 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13787 ER - TY - JOUR A1 - Petereit, Johannes A1 - Pikovskij, Arkadij T1 - Chaos synchronization by nonlinear coupling JF - Communications in nonlinear science & numerical simulation N2 - We study synchronization properties of three nonlinearly coupled chaotic maps. Coupling is introduced in such a way, that it cannot be reduced to pairwise terms, but includes combined action of all interacting units. For two models of nonlinear coupling we characterize the transition to complete synchrony, as well as partially synchronized states. Relation to hypernetworks of chaotic units is also discussed. KW - Chaos synchronization KW - Partial synchrony KW - Intermittency KW - Hypernetwork Y1 - 2016 U6 - https://doi.org/10.1016/j.cnsns.2016.09.002 SN - 1007-5704 SN - 1878-7274 VL - 44 SP - 344 EP - 351 PB - Elsevier CY - Amsterdam ER - TY - INPR A1 - Pikovskij, Arkadij A1 - Feudel, Ulrike T1 - Characterizing strange nonchaotic attractors N2 - Strange nonchaotic attractors typically appear in quasiperiodically driven nonlinear systems. Two methods of their characterization are proposed. The first one is based on the bifurcation analysis of the systems, resulting from periodic approximations of the quasiperiodic forcing. Secondly, we propose th characterize their strangeness by calculating a phase sensitivity exponent, that measures the sensitivity with respect to changes of the phase of the external force. It is shown, that phase sensitivity appears if there is a non-zero probability for positive local Lyapunov exponents to occur. T3 - NLD Preprints - 2 Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13405 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenau, Philip T1 - Phase compactons N2 - We study the phase dynamics of a chain of autonomous, self-sustained, dispersively coupled oscillators. In the quasicontinuum limit the basic discrete model reduces to a Korteveg-de Vries-like equation, but with a nonlinear dispersion. The system supports compactons - solitary waves with a compact support - and kovatons - compact formations of glued together kink-antikink pairs that propagate with a unique speed, but may assume an arbitrary width. We demonstrate that lattice solitary waves, though not exactly compact, have tails which decay at a superexponential rate. They are robust and collide nearly elastically and together with wave sources are the building blocks of the dynamics that emerges from typical initial conditions. In finite lattices, after a long time, the dynamics becomes chaotic. Numerical studies of the complex Ginzburg-Landau lattice show that the non-dispersive coupling causes a damping and deceleration, or growth and acceleration, of compactons. A simple perturbation method is applied to study these effects. (c) 2006 Elsevier B.V. All rights reserved Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/01672789 U6 - https://doi.org/10.1016/j.physd.2006.04.015 ER - TY - JOUR A1 - Rosenau, Philip A1 - Pikovskij, Arkadij T1 - Phase compactons in chains of dispersively coupled oscillators N2 - We study the phase dynamics of a chain of autonomous oscillators with a dispersive coupling. In the quasicontinuum limit the basic discrete model reduces to a Korteveg-de Vries-like equation, but with a nonlinear dispersion. The system supports compactons: solitary waves with a compact support and kovatons which are compact formations of glued together kink-antikink pairs that may assume an arbitrary width. These robust objects seem to collide elastically and, together with wave trains, are the building blocks of the dynamics for typical initial conditions. Numerical studies of the complex Ginzburg-Landau and Van der Pol lattices show that the presence of a nondispersive coupling does not affect kovatons, but causes a damping and deceleration or growth and acceleration of compactons Y1 - 2005 SN - 0031-9007 ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Pikovskij, Arkadij T1 - Antireliability of noise-driven neurons N2 - We demonstrate, within the framework of the FitzHugh-Nagumo model, that a firing neuron can respond to a noisy driving in a nonreliable manner: the same Gaussian white noise acting on identical neurons evokes different patterns of spikes. The effect is characterized via calculations of the Lyapunov exponent and the event synchronization correlations. We construct a theory that explains the antireliability as a combined effect of a high sensitivity to noise of some stages of the dynamics and nonisochronicity of oscillations. Geometrically, the antireliability is described by a random noninvertible one-dimensional map Y1 - 2006 UR - http://pre.aps.org/ U6 - https://doi.org/10.1103/Physreve.73.061906 SN - 1539-3755 ER - TY - JOUR A1 - Schwabedal, Justus T. C. A1 - Pikovskij, Arkadij T1 - Effective phase description of noise-perturbed and noise-induced oscillations N2 - An effective dynamical description of a general class of stochastic phase oscillators is presented. For this, the effective phase velocity is defined either by the stochastic phase oscillators invariant probability density or its first passage times. Using the first approach the effective phase exhibits the correct frequency and invariant distribution density, whereas the second approach models the proper phase resetting curve. The discrepancy of the effective models is most pronounced for noise-induced oscillations and is related to non-monotonicity of the stochastic phase variable due to fluctuations. Y1 - 2010 U6 - https://doi.org/10.1140/epjst/e2010-01271-6 SN - 1951-6355 ER - TY - JOUR A1 - Schwabedal, Justus T. C. A1 - Pikovskij, Arkadij T1 - Effective phase dynamics of noise-induced oscillations in excitable systems N2 - We develop an effective description of noise-induced oscillations based on deterministic phase dynamics. The phase equation is constructed to exhibit correct frequency and distribution density of noise-induced oscillations. In the simplest one-dimensional case the effective phase equation is obtained analytically, whereas for more complex situations a simple method of data processing is suggested. As an application an effective coupling function is constructed that quantitatively describes periodically forced noise-induced oscillations. Y1 - 2010 UR - http://link.aps.org/doi/10.1103/PhysRevE.81.046218 U6 - https://doi.org/10.1103/Physreve.81.046218 SN - 1539-3755 ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Pikovskij, Arkadij T1 - Effects of delayed feedback on Kuramoto transition N2 - We develop a weakly nonlinear theory of the Kuramoto transition in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not effect the transition point, but can reduce or enhance the amplitude of collective oscillations Y1 - 2006 UR - http://www2.yukawa.kyoto-u.ac.jp/~ptpwww/link-supplement.html U6 - https://doi.org/10.1143/PTPS.161.43 SN - 0375-9687 ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Pikovskij, Arkadij T1 - Synchronization and desynchronization of self-sustained oscillators by common noise N2 - We consider the effect of external noise on the dynamics of limit cycle oscillators. The Lyapunov exponent becomes negative under influence of small white noise, what means synchronization of two or more identical systems subject to common noise. We analytically study the effect of small nonidentities in the oscillators and in the noise, and derive statistical characteristics of deviations from the perfect synchrony. Large white noise can lead to desynchronization of oscillators, provided they are nonisochronous. This is demonstrated for the Van der Pol-Duffing system Y1 - 2005 ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Pikovskij, Arkadij T1 - Synchronization of self-sustained oscillators by common white noise N2 - We study the stability of self-sustained oscillations under the influence of external noise. For small-noise amplitude a phase approximation for the Langevin dynamics is valid. A stationary distribution of the phase is used for an analytic calculation of the maximal Lyapunov exponent. We demonstrate that for small noise the exponent is negative, which corresponds to synchronization of oscillators. (c) 2004 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - BOOK A1 - Freude, Ulrike A1 - Kuznetsov, Sergey P. A1 - Pikovskij, Arkadij T1 - Strange nonchaotic attractors : dynamics between order and chaos in Quasiperiodically Forced Systems Y1 - 2006 SN - 981-256633-3 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Zillmer, Rüdiger A1 - Pikovskij, Arkadij T1 - Continuous approach for the random-field Ising chain N2 - We study the random-field Ising chain in the limit of strong exchange coupling. In order to calculate the free energy we apply a continuous Langevin-type approach. This continuous model can be solved exactly, whereupon we are able to locate the crossover between an exponential and a power-law decay of the free energy with increasing coupling strength. In terms of magnetization, this crossover restricts the validity of the linear scaling. The known analytical results for the free energy are recovered in the corresponding limits. The outcomes of numerical computations for the free energy are presented, which confirm the results of the continuous approach. We also discuss the validity of the replica method which we then utilize to investigate the sample-to-sample fluctuations of the finite size free energy Y1 - 2005 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Zaikin, Alexei A. A1 - de la Casa, M. A. T1 - System Size Resonance in Coupled Noisy Systems and in the Ising Model N2 - We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensemblesùlattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance. Y1 - 2002 ER - TY - JOUR A1 - Cimponeriu, Laura A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Estimation of delay in coupling from time series N2 - We demonstrate that a tune delay in weak coupling between two self-sustained oscillators can be estimated from the observed time series data. We present two methods which are. based on the analysis of interrelations between the phases of the signals. We show analytically and numerically that irregularity of the phase dynamics (due to the intrinsic noise or chaos) is essential for determination,of the delay. We compare and contrast both methods to the standard cross-correlation analysis Y1 - 2004 SN - 1063-651X ER - TY - JOUR A1 - Straube, Arthur V. A1 - Abel, Markus A1 - Pikovskij, Arkadij T1 - Temporal chaos versus spatial mixing in reaction-advection-diffusion systems N2 - We develop a theory describing the transition to a spatially homogeneous regime in a mixing flow with a chaotic in time reaction. The transverse Lyapunov exponent governing the stability of the homogeneous state can be represented as a combination of Lyapunov exponents for spatial mixing and temporal chaos. This representation, being exact for time- independent flows and equal Peclet numbers of different components, is demonstrated to work accurately for time- dependent flows and different Peclet numbers Y1 - 2004 SN - 0031-9007 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Delayed feedback control of collective synchrony : an approach to suppression of pathological brain rhythms N2 - We suggest a method for suppression of synchrony in a globally coupled oscillator network, based on the time- delayed feedback via the mean field. Having in mind possible applications for suppression of pathological rhythms in neural ensembles, we present numerical results for different models of coupled bursting neurons. A theory is developed based on the consideration of the synchronization transition as a Hopf bifurcation Y1 - 2004 SN - 1063-651X ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Controlling synchronization in an ensemble of globally coupled oscillators N2 - We propose a technique to control coherent collective oscillations in ensembles of globally coupled units (self- sustained oscillators or maps). We demonstrate numerically and theoretically that a time delayed feedback in the mean field can, depending on the parameters, enhance or suppress the self-synchronization in the population. We discuss possible applications of the technique Y1 - 2004 SN - 0031-9007 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Synchronization approach to analysis of biological systems N2 - In this article we review the application of the synchronization theory to the analysis of multivariate biological signals. We address the problem of phase estimation from data and detection and quantification of weak interaction, as well as quantification of the direction of coupling. We discuss the potentials as well as limitations and misinterpretations of the approach Y1 - 2004 SN - 0219-4775 ER - TY - JOUR A1 - Neumann, Eireen A1 - Pikovskij, Arkadij T1 - Quasiperiodically driven Josephson junctions : strange nonchaotic attractors, symmetries and transport Y1 - 2002 ER - TY - JOUR A1 - Tsimring, L. S. A1 - Pikovskij, Arkadij T1 - Noise-Induced Dynamics in Bistable Systems with Delay N2 - Noise-induced dynamics of a prototypical bistable system with delayed feedback is studied theoretically and numerically. For small noise and magnitude of the feedback, the problem is reduced to the analysis of the two-state model with transition rates depending on the earlier state of the system. Analytical solutions for the autocorrelation function and the power spectrum have been found. The power spectrum has a peak at the frequency corresponding to the inverse delay time, whose amplitude has a maximum at a certain noise level, thus demonstrating coherence resonance. The linear response to the external periodic force also has maxima at the frequencies corresponding to the inverse delay time and its harmonics. Y1 - 2001 ER - TY - JOUR A1 - Ahlers, Volker A1 - Zillmer, Rüdiger A1 - Pikovskij, Arkadij T1 - Lyapunov exponents in disordered chaotic systems : avoided crossing and level statistics N2 - The behavior of the Lyapunov exponents (LEs) of a disordered system consisting of mutually coupled chaotic maps with different parameters is studied. The LEs are demonstrated to exhibit avoided crossing and level repulsion, qualitatively similar to the behavior of energy levels in quantum chaos. Recent results for the coupling dependence of the LEs of two coupled chaotic systems are used to explain the phenomenon and to derive an approximate expression for the distribution functions of LE spacings. The depletion of the level spacing distribution is shown to be exponentially strong at small values. The results are interpreted in terms of the random matrix theory. Y1 - 2001 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij T1 - Comment on "Phase synchronization in discrete chaotic systems" N2 - Chen et al. [Phys. Rev. E 61, 2559 (2000)] recently proposed an extension of the concept of phase for discrete chaotic systems. Using the newly introduced definition of phase they studied the dynamics of coupled map lattices and compared these dynamics with phase synchronization of coupled continuous-time chaotic systems. In this paper we illustrate by two simple counterexamples that the angle variable introduced by Chen et al. fails to satisfy the basic requirements to the proper phase. Furthermore, we argue that an extension of the notion of phase synchronization to generic discrete maps is doubtful. Y1 - 2001 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Neumann, Eireen T1 - Comment on "Simple approach to the creation of a strange nonchaotic attractor in any chaotic system" N2 - We address the problem of existence of strange nonchaotic attractors (SNAs) in quasiperiodically forced dynamical systems. Recently, Shuai and Wong [Phys. Rev. E 59, 5338 (1999)] suggested a universal method for constructing a SNA in an arbitrary system possessing chaos. We demonstrate here that, in general, this method fails. For arbitrary systems, it gives a SNA only in a vicinity of transition to chaos. We discuss also a special example, where the method by Shuai and Wong indeed produces a SNA. Y1 - 2001 ER - TY - JOUR A1 - Topaj, Dmitri A1 - Kye, W.-H A1 - Pikovskij, Arkadij T1 - Transition to Coherence in Populations of Coupled Chaotic Oscillators: A Linear Response Approach N2 - We consider the collective dynamics in an ensemble of globally coupled chaotic maps. The transition to the coherent state with a macroscopic mean field is analyzed in the framework of the linear response theory. The linear response function for the chaotic system is obtained using the perturbation approach to the Frobenius-Perron operator. The transition point is defined from this function by virtue of the self-excitation condition for the feedback loop. Analytical results for the coupled Bernoulli maps are confirmed by the numerics. Y1 - 2001 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael T1 - Comment on "Intermittency in chaotic rotations" N2 - Lai et al. [Phys. Rev. E 62, R29 (2000)] claim that the angular velocity of the phase point moving along the chaotic trajectory in a properly chosen projection (the instantaneous frequency) is intermittent. Using the same examples, namely the Rössler and the Lorenz systems, we show the absence of intermittency in the dynamics of the instantaneous frequency.This is confirmed by demonstrating that the phase dynamics exhibits normal diffusion. We argue that the nonintermittent behavior is generic. Y1 - 2001 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Popovych, Orest A1 - Maistrenko, Yu T1 - Resolving Clusters in Chaotic Ensembles of Globally Coupled Identical Oscillators N2 - Clustering in ensembles of globally coupled identical chaotic oscillators is reconsidered using a twofold approach. Stability of clusters towards "emanation" of the elements is described with the evaporation Lyapunov exponents. It appears that direct numerical simulations of ensembles often lead to spurious clusters that have positive evaporation exponents, due to a numerical trap. We propose a numerical method that surmounts the spurious clustering. We also demonstrate that clustering can be very sensitive to the number of elements in the ensemble. Y1 - 2001 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael T1 - Detecting direction of coupling in interacting oscillators N2 - We propose a method for experimental detection of directionality of weak coupling between two self-sustained oscillators from bivariate data. The technique is applicable to both noisy and chaotic systems that can be nonidentical or even structurally different. We introduce an index that quantifies the asymmetry in coupling. Y1 - 2001 ER - TY - JOUR A1 - Stark, J. A1 - Feudel, Ulrike A1 - Glendinning, P. A. A1 - Pikovskij, Arkadij T1 - Rotation numbers for quasi-periodically forced monotone circle maps Y1 - 2002 SN - 1468-9367 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical riddling in a system of coupled maps N2 - The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state. Y1 - 2001 ER - TY - JOUR A1 - Zillmer, Rüdiger A1 - Ahlers, Volker A1 - Pikovskij, Arkadij T1 - Scaling of Lyapunov exponents of coupled chaotic systems N2 - We develop a statistical theory of the coupling sensitivity of chaos. The effect was first described by Daido [Prog. Theor. Phys. 72, 853 (1984)]; it appears as a logarithmic singularity in the Lyapunov exponent in coupled chaotic systems at very small couplings. Using a continuous-time stochastic model for the coupled systems we derive a scaling relation for the largest Lyapunov exponent. The singularity is shown to depend on the coupling and the systems' mismatch. Generalizations to the cases of asymmetrical coupling and three interacting oscillators are considered, too. The analytical results are confirmed by numerical simulations. Y1 - 2000 ER - TY - JOUR A1 - Zillmer, Rüdiger A1 - Ahlers, Volker A1 - Pikovskij, Arkadij T1 - Stochastic approach to Lapunov exponents in coupled chaotic systems Y1 - 2000 SN - 3-540-41074-0 ER - TY - JOUR A1 - Ahlers, Volker A1 - Zillmer, Rüdiger A1 - Pikovskij, Arkadij T1 - Statistical theory for the coupling sensitivity of chaos Y1 - 2000 SN - 1-563-96915-7 ER - TY - JOUR A1 - Glendinning, P. A. A1 - Feudel, Ulrike A1 - Pikovskij, Arkadij A1 - Stark, J. T1 - The structure of mode-locking regions in quasi-periodically forced circle maps Y1 - 2000 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Kurths, Jürgen T1 - Phase synchronization in regular and chaotic systems Y1 - 2000 SN - 0218-1274 ER - TY - BOOK A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Kurths, Jürgen T1 - Synchronization : a universal concept in nonlinear sciences T3 - Cambridge nonlinear science series Y1 - 2001 SN - 0-521-59285-2 VL - 12 PB - Cambridge Univ. Press CY - Cambridge ET - 1st paperback ed., repr ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Dynamic localization of Lyapunov vectors in Hamiltonian lattices Y1 - 2001 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Dynamic localization of Lyapunov vectors in space-time chaos N2 - We study the dynamics of Lyapunov vectors in various models of one-dimensional distributed systems with spacetime chaos. We demonstrate that the vector corresponding to the maximum exponent is always localized and the localization region wanders irregularly. This localization is explained by interpreting the logarithm of the Lyapunov vector as a roughening interface. We show that for many systems, the `interface' belongs to the Kardar-Parisi- Zhang universality class. Accordingly, we discuss the scaling behaviour of finite-size effects and self-averaging properties of the Lyapunov exponents. Y1 - 1998 ER - TY - JOUR A1 - Kuznetsov, Sergey P. A1 - Neumann, Eireen A1 - Pikovskij, Arkadij A1 - Sataev, I. G. T1 - Critical point of tori collision in quasiperiodically forced systems N2 - We report on a type of scaling behavior in quasiperiodically forced systems. On the parameter plane the critical point appears as a terminal point of the tori-collision bifurcation curve; its location is found numerically with high precision for two basic models, the forced supercritical circle map and the forced quadratic map. The hypothesis of universality, based on renormalization group arguments, is advanced to explain the observed scaling properties for the critical attractor and for the parameter plane arrangement in the neighborhood of the criticality. Y1 - 2000 ER - TY - JOUR A1 - Ruffo, Stefano A1 - Pikovskij, Arkadij T1 - Finite-size effects in a population of interacting oscillators N2 - We consider a large population of globally coupled noisy phase oscillators. In the thermodynamic limit N this system exhibits a nonequilibrium phase transition, at which amacroscopic mean field appears. It is shown that for large but finite system size N the system can be described by the noisy Stuart-Landau equation, yielding scaling behavior of statistical characteristics of the macroscopic mean field with N. The predictions of the theory are checked numerically. Y1 - 1999 ER - TY - JOUR A1 - Kuznetsov, Sergey P. A1 - Feudel, Ulrike A1 - Pikovskij, Arkadij T1 - Renormalization group for scaling at the torus-doubling terminal point N2 - The quasiperiodically forced logistic map is analyzed at the terminal point of the torus-doubling bifurcation curve, where the dynamical regimes of torus, doubled torus, strange nonchaotic attractor, and chaos meet. Using the renormalization group approach we reveal scaling properties both for the critical attractor and for the parameter plane topography near the critical point. Y1 - 1998 ER - TY - JOUR A1 - Katzorke, Ines A1 - Pikovskij, Arkadij T1 - Chaos and complexity in a simple model of production dynamics Y1 - 2000 SN - 1026-0226 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Zaks, Michael A. A1 - Kurths, Jürgen T1 - Phase synchronization of regular and chaotic oscillators Y1 - 1999 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical loss of synchronization in coupled chaotic systems Y1 - 2000 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - On the generalized dimensions for the fourier spectrum of the thue-morse sequence Y1 - 1999 ER - TY - JOUR A1 - Chaté, Hugues A1 - Pikovskij, Arkadij A1 - Rudzick, Oliver T1 - Forcing oscillatory media : phase kinks vs. synchronization Y1 - 1999 ER - TY - JOUR A1 - Tass, Peter A1 - Rosenblum, Michael A1 - Weule, J. A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij A1 - Volkmann, J. A1 - Schnitzler, A. A1 - Freund, H.-J. T1 - Detection of n:m phase locking from noisy data : application to magnetoencephalography N2 - We use the concept of phase synchronization for the analysis of noisy nonstationary bivariate data. Phase synchronization is understood in a statistical sense as an existence of preferred values of the phase difference, and two techniques are proposed for a reliable detection of synchronous epochs. These methods are applied to magnetoencephalograms and records of muscle activity of a Parkinsonian patient. We reveal that Y1 - 1998 ER - TY - JOUR A1 - Abel, Markus A1 - Flach, S. A1 - Pikovskij, Arkadij T1 - Localisation in a coupled standard map lattice N2 - We study spatially localized excitations in a lattice of coupled standard maps. Time-periodic solutions (breathers) exist in a range of coupling that is shown to shrink as the period grows to infinity, thus excluding the possibility of time-quasiperiodic breathers. The evolution of initially localized chaotic and quasiperiodic states in a lattice is studied numerically. Chaos is demonstrated to spread Y1 - 1998 UR - http://www.stat.physik.uni-potsdam.de/~markus/papers/PhD119-4.ps.gz ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - From Phase to Lag Synchronization in Coupled Chaotic Oscillators N2 - We study synchronization transitions in a system of two coupled self-sustained chaotic oscillators. We demonstrate that with the increase of coupling strength the system first undergoes the transition to phase synchronization. With a further increase of coupling, a new synchronous regime is observed, where the states of two oscillators are nearly identical, but one system lags in time to the other. We describe thisregime as a state with correlated amplitudes and a constant phase shift. These transitions are traced in the Lyapunov spectrum. Y1 - 1997 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Coherence Resonance in a Noise-Driven Excitable System N2 - We study the dynamics of the excitable Fitz Hugh-Nagumo system under external noisy driving. Noise activates the system producing a sequence of pulses. The coherence of these noise-induced oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence resonance is explained by different noise dependencies of the activation and the excursion times. A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative description of this phenomenon. Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij A1 - Schafer, C. A1 - Tass, Peter A1 - Abel, Hans-Henning T1 - Synchronization in Noisy Systems and Cardiorespiratory Interaction Y1 - 1998 ER - TY - JOUR A1 - Ruzick, Oliver A1 - Scheffczyk, Christian A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Dynamics of chaos-order interface in coupled map lattices Y1 - 1997 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Symbolic dynamics behind the singular continuous power spectra of continuous flows Y1 - 1998 ER - TY - JOUR A1 - Abel, Markus A1 - Flach, S. A1 - Pikovskij, Arkadij T1 - Localization in a coupled standard map lattice Y1 - 1998 ER - TY - JOUR A1 - Witt, Annette A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij T1 - Testing stationarity in time series Y1 - 1998 ER - TY - JOUR A1 - Abel, Markus A1 - Pikovskij, Arkadij T1 - Parametric excitation of breathers in a nonlinear lattice N2 - We investigate localized periodic solutions (breathers) in a lattice of parametrically driven, nonlinear dissipative oscillators. These breathers are demonstrated to be exponentially localized, with two characteristic localization lengths. The crossover between the two lengths is shown to be related to the transition in the phase of the lattice oscillations. Y1 - 1997 UR - http://www.stat.physik.uni-potsdam.de/~markus/papers/par.ps.gz ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Feudel, Ulrike T1 - Comment on "Strange nonchaotic attractors in autonomous and periodically driven systems" N2 - The problem of the existence of strange nonchaotic attractors (SNA's) in autonomous systems is discussed. It is demonstrated that the recently reported example of a SNA in an autonomous system [V. S. Anishchenko et al., Phys. Rev. E 54, 3231 (1996)] is in fact a chaotic attractor with positive largest Lyapunov exponent. Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Phase synchronization in noisy and chaotic oscillators Y1 - 1997 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - On the correlation dimension of the spectral measure for the Thue-Morse sequence Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Phase synchronization in driven and coupled chaotic oscillators Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Effect of phase synchronization in driven chaotic oscillators Y1 - 1997 ER - TY - JOUR A1 - Witt, Annette A1 - Feudel, Ulrike A1 - Pikovskij, Arkadij T1 - Birth of strange nonchaotic attractors due to interior crisis Y1 - 1997 ER -